
Official Nomenclature of US and European Societies of Rheology (2018-10) 

Assembled by J. M. Dealy and D. Vlassopoulos, with advice from G. G. Fuller, R. G. Larson, 
J. Mewis, D. J. Read, J. Vermant, N. J. Wagner, and G. McKinley. 

TABLE I.  Steady simple shear (viscometric flow) 

Name Definition Symbol SI units a 
Direction of flow (simple shear)  𝑥   m 
Direction of velocity gradient (simple shear)  𝑥   m 
Neutral direction (simple shear)  𝑥   m 
Shear or normal force 𝑚𝑎  F N 
Velocity 𝑑𝑥 𝑑𝑡⁄   𝑣   m s–1 
Acceleration  𝑑𝑣 𝑑𝑡⁄   𝑎   m s–2 
Shear stress b 𝐹 𝐴⁄   𝜎  Pa 
Shear strain 𝑑𝑥 𝑑𝑥⁄  𝛾  – 
Shear rate |𝑑𝑣 𝑑𝑥⁄ |  𝛾  s–1 

Vorticity c 𝑑𝑣 𝑑𝑥⁄  𝜔   s–1 
Viscosity |𝜎| 𝛾⁄   𝜂 𝛾   Pa s 
Yield stress  𝜎   Pa 
Yield strain  𝛾   – 
First normal stress difference  𝜎 𝜎  𝑁   Pa 
Second normal stress difference   𝜎 𝜎   𝑁   Pa 
First normal stress coefficient  𝑁 /𝛾   𝛹   Pa s2 
Second normal stress coefficient 𝑁 /𝛾   𝛹   Pa s2 
Normal stress ratio 𝑁 𝑁⁄   𝛹 𝛾   – 
Zero-shear viscosity 
(limiting low shear rate viscosity) 

𝜂 𝛾 → 0   𝜂   Pa s 

Zero-shear first normal stress coefficient 𝛹 𝛾 → 0   𝛹 .   Pa s2 
Consistency index in power law for viscosity 𝜂 𝐾𝛾   𝑛  – 
Constant in power law for viscosity see above equation 𝐾  Pa sn 

a SI allows either a dot between units or a space, as used here. 
b A is the area in m2. 
c In the fluid dynamics community a prefactor of 1/2 is used in the definition of the vorticity. 
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TABLE II.  Linear viscoelasticity 

Name Definition Symbol Units 

Simple shear 

Shear modulus of a solid 𝜎 𝛾⁄   𝐺  Pa 
Relaxation modulus 𝜎 𝑡 𝛾⁄   𝐺 𝑡   Pa 
Relaxation strength in discrete spectrum – 𝑔   Pa 
Relaxation time in discrete spectrum – 𝜏   s 
Continuous relaxation spectrum – a 𝐻 𝜏   Pa 
Orthogonal superposition complex modulus b,c – 𝐺∗ 𝜔, 𝛾  Pa 
Parallel superposition complex modulus b,c – 𝐺∥

∗ 𝜔, 𝛾  Pa 
Memory function 𝑑𝐺 𝑠 𝑑𝑠⁄   𝑚 𝑠   Pa s–1 
Creep compliance (shear) 𝛾 𝑡 𝜎⁄   𝐽 𝑡   Pa–1 
Equilibrium compliance of solid 𝐽 𝑡 𝑡 → ∞   𝐽   Pa–1 
Recoverable compliance 𝐽 𝑡 𝑡 𝜂⁄   𝐽 𝑡   Pa–1 
Steady-state compliance of fluid 𝐽 𝑡 𝑡 𝜂⁄ 𝑡 → ∞   𝐽   Pa–1 
Continuous retardation spectrum d – d 𝐿 𝜏   Pa–1 

Small-amplitude oscillatory shear 

Strain amplitude 𝛾 𝑡 𝛾 sin 𝜔𝑡  𝛾   – 
Loss angle (phase angle) 𝜎 𝑡 𝜎 sin 𝜔𝑡 𝛿   𝛿  rad 
Stress amplitude 𝜎 𝑡 𝜎 sin 𝜔𝑡 𝛿   𝜎   Pa 
Complex modulus 𝐺 𝑖𝐺   𝐺∗  Pa 
Absolute magnitude of 𝐺∗ 𝜎 𝛾⁄   |𝐺∗| or 

𝐺   
Pa 

Storage modulus 𝐺 cos 𝛿  𝐺   Pa 
Loss modulus 𝐺 sin 𝛿  𝐺   Pa 
Complex viscosity 𝜂 𝑖𝜂   𝜂∗  Pa s 
Absolute magnitude of η* 𝜎 𝜔𝛾⁄  |𝜂∗|  Pa s 
Dynamic viscosity (in phase with strain rate) 𝐺 𝜔⁄   𝜂   Pa s 
Out-of-phase (with strain rate) component of η* 𝐺 𝜔⁄   𝜂   Pa s 
Complex compliance 𝐽 𝑖𝐽   𝐽∗  Pa–1 
Absolute magnitude of J* 𝛾 𝜎⁄ 1 𝐺⁄   |𝐽∗ |  Pa–1 
Storage compliance 𝛾 𝜎⁄ cos 𝛿 𝐽   Pa–1 
Loss compliance 𝛾 𝜎⁄ sin 𝛿  𝐽   Pa–1 
Plateau moduluse – e 𝐺   Pa 

Tensile (Uniaxial) Extension c 

Net tensile stress  𝜎 𝜎  𝜎   Pa 
Hencky strain  ln 𝐿 𝐿⁄ 𝜀  – 
Hencky strain rate  𝑑 ln 𝐿 𝑑𝑡⁄   𝜀  s–1 
Tensile relaxation modulus 𝜎 𝑡 𝜀⁄   𝐸 𝑡   Pa 
Tensile creep compliance 𝜀 𝑡 𝜎⁄   𝐷 𝑡   Pa–1 

a 𝐺 𝑡 𝐻 𝜏 exp 𝑡 𝜏⁄ 𝑑 ln 𝜏  
b The same subscripts apply to definitions of storage and loss moduli and viscosities. 
c Also applies to nonlinear phenomena in uniaxial extension. 
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d 𝐽 𝑡 𝐿 𝜏 1 exp 𝑡/𝜏 𝑑 ln𝜏  
e Because there is not a true plateau in G(t) or G′(ω), 𝐺  is inferred from G′(ω) and G"(ω) 
using methods reviewed by Liu et al. [Polymer 47, 4461−4479 (2006)]. 

TABLE III.  Shift factors for time-temperature superposition 

Name Definition Symbol SI Units 
Vertical shift factor a 𝑏 𝐺 𝑇, 𝜔𝑎 𝐺 𝑇 , 𝜔  𝑏   – 
Horizontal shift factor 𝑏 𝐺 𝑇, 𝜔𝑎 𝐺 𝑇 , 𝜔  𝑎   – 
First WLF coefficient 

log 𝑎
𝑐 𝑇 𝑇

𝑐 𝑇 𝑇
𝑐   – 

Second WLF coefficient 
log 𝑎

𝑐 𝑇 𝑇
𝑐 𝑇 𝑇

𝑐   K 

Activation energy for flow 
𝑎 exp

𝐸
𝑅

1
𝑇

1
𝑇

 
𝐸   kJ mol–1 

a For rubbers, 𝑏T is given by 𝑇 𝜌 𝑇𝜌⁄ , where 𝜌 is mass density, with 𝜌 𝜌 𝑇  [J. D. Ferry, 
Viscoelastic properties of polymers, 3rd Ed., Wiley, NY, 1980]. It has also been found to be 
appropriate for polymers in general. 
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TABLE IV.  Nonlinear viscoelasticity in shear 

Name Definition Symbol SI Units 

Stress relaxation (step strain) 

Strain amplitude  𝛾   – 
Relaxation modulus (nonlinear) 𝜎 𝑡 𝛾⁄  𝐺 𝑡, 𝛾  Pa 
Damping function in shear 𝐺 𝑡, 𝛾 𝐺 𝑡⁄   ℎ 𝛾   – 
First normal stress relaxation function  𝑁 𝑡, 𝛾   Pa 
Second normal stress relaxation function  𝑁 𝑡, 𝛾   Pa 
First normal stress relaxation coefficient 𝑁 𝑡, 𝛾 𝛾⁄   𝛹 𝑡, 𝛾   Pa 
Second normal stress relaxation coefficient 𝑁 𝑡, 𝛾 𝛾⁄   𝛹 𝑡, 𝛾   Pa 

Start-up of steady shear (at fixed shear rate) 

Shear stress growth function  𝜎 𝑡, 𝛾   Pa 
Shear stress growth coefficient 𝜎 𝑡, 𝛾 𝛾⁄   𝜂 𝑡, 𝛾   Pa s 
First normal stress growth function 𝜎 𝜎   𝑁 𝑡, 𝛾   Pa 
First normal stress growth coefficient 𝑁 𝑡, 𝛾 𝛾⁄ 𝛹 𝑡, 𝛾   Pa s2 
Second normal stress growth function 𝜎 𝜎  𝑁 𝑡, 𝛾   Pa 
Second normal stress growth coefficient 𝑁 𝑡, 𝛾 𝛾⁄ 𝛹 𝑡, 𝛾    Pa s2 
Stress Ratio 𝑁 𝛾 𝜎 𝛾⁄   𝑆𝑅  – 

Cessation of steady shear (𝛾 0 from 𝑡 0) 

Shear stress decay function  𝜎 𝑡, 𝛾   Pa 
Shear stress decay coefficient 𝜎 𝑡, 𝛾 𝛾⁄ 𝜂 𝑡, 𝛾  Pa s 
First normal stress decay function 𝜎 𝜎   𝑁 𝑡, 𝛾   Pa 
First normal stress decay coefficient 𝑁 𝑡, 𝛾 𝛾⁄   𝛹 𝑡, 𝛾   Pa s2 
Second normal stress decay function 𝜎 𝜎   𝑁 𝑡, 𝛾   Pa 
Second normal stress decay coefficient 𝑁 𝑡, 𝛾 𝛾⁄   𝛹 𝑡, 𝛾   Pa s2 

Creep and creep recovery (recoil) 

Creep compliance 𝛾 𝑡, 𝜎 𝜎⁄   𝐽 𝑡, 𝜎   Pa–1 
Steady-state compliance a 𝐽 𝑡 → ∞, 𝜎   𝐽 𝜎   Pa–1 
Recoverable strain 
(after 𝑡  when 𝜎 → 0) 

𝛾 𝑡 , 𝜎 𝛾 𝑡, 𝜎  
𝑡 𝑡  

𝛾 𝑡 , 𝜎   
𝑡 𝑡 𝑡  

– 

Ultimate recoil 𝛾 𝑡 → ∞, 𝜎   𝛾 𝜎   – 
Steady-state recoverable compliance a 𝛾 𝜎 𝜎⁄   𝐽 𝜎   Pa–1 

a Although measured in different ways, the steady-state compliance and the steady-state 
recoverable compliance should be equal to each other according to the Boltzmann principle. 
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TABLE V.  Nonlinear viscoelasticity in extension. 

Name Definition Symbol SI Units 

Tensile (uniaxial) extension 

Engineering strain a 𝐿 𝐿 𝐿⁄   𝜀  – 
Engineering stress a 𝐹 𝐴⁄  𝜎 Pa 
Young’s modulus of a solid 𝜎 𝜀⁄   E Pa 
Net tensile stress (true) 𝜎 𝜎   𝜎   Pa 
Hencky strain  ln 𝐿 𝐿⁄   ε or 𝜖 – 
Hencky strain rate 𝑑 ln 𝐿 𝑑𝑡⁄   𝜀 or 𝜖 s–1 
Tensile stress growth function  𝜎 𝑡, 𝜀  Pa 
Tensile stress growth coefficient 𝜎 𝑡, 𝜀 𝜀⁄   𝜂 𝑡, 𝜀   Pa s 
Extensional viscosity 𝜂 𝑡, 𝜀 𝑡 → ∞  𝜂 𝜀   Pa s 
Tensile creep compliance 𝜀 𝑡 𝜎⁄   𝐷 𝑡, 𝜎   Pa–1 
Recoverable strain 
(after 𝑡  where 𝜎E → 0) 

𝜀 𝑡 , 𝜎 𝜀 𝑡, 𝜎  
𝑡 𝑡  

𝜀 𝑡 , 𝜀   
𝑡 𝑡 𝑡

– 

Biaxial extension (symmetrical) 

Biaxial strain ln 𝑅 𝑅⁄   𝜀  – 
Biaxial strain rate 𝑑 ln 𝑅 𝑑𝑡⁄   𝜀   s–1 
Net stretching stress 𝜎 𝜎   𝜎   Pa 
Biaxial stretch growth function  𝜎 𝑡, 𝜀   Pa 
Biaxial stretch growth coefficient 𝜎 𝑡, 𝜀 𝜀⁄ 𝜂 𝑡, 𝜀 Pa s 
Biaxial stress decay coefficient 𝜎 𝑡, 𝜀 𝜀⁄ 𝜂 𝑡, 𝜀 Pa s 
Biaxial extensional viscosity 𝜎 𝑡 → ∞, 𝜀 𝜀⁄ 𝜂 𝜀   Pa s 
Biaxial creep compliance 𝜀 𝑡 𝜎⁄   𝐷 𝑡, 𝜎   Pa–1 

a In the mechanics literature, the same symbols are often used for both engineering and true 
stress and strain, but they are only equivalent in the limit of very small deformations. 

TABLE VI.  Rheometry 

Name Definition Symbol SI Units

Capillary rheometers 

Apparent wall shear stress a 𝑃 𝑅 2𝐿⁄   𝜎   Pa 
Apparent wall shear rate 4𝑄 𝜋𝑅⁄   𝛾   s–1 
Wall shear stress 𝜎 𝑟 𝑅 𝜎   Pa 
Wall shear rate 𝑑𝑣 𝑑𝑟 𝑟 𝑅⁄ 𝛾 s–1 

Cone-plate rheometers 

Cone angle Figure 1 𝛽  rad 
Angular rotation Figure 1 𝜑  rad 
Angular velocity 𝑑𝜑 𝑑𝑡⁄   𝛺  rad s–1

Torque b 2𝜋𝑅 𝜎 3⁄   𝑀  N m 
Normal thrust Figure 1 𝐹   N 

a 𝑃  = driving (reservoir) pressure (exit pressure neglected) 
b Approximation valid for 𝛽 0.1 rad. 



6 

 

Figure 1.  Symbols describing cone-plate geometry. 

TABLE VII.  Solutions 

Name Definition Symbol SI units 
Concentration  𝑐  kg m–3 a 

Overlap 
concentration 

 𝑐∗  kg m3 a 

Solvent viscosity   𝜂   Pa s 
Relative viscosity  𝜂 𝜂⁄   𝜂   – 
Specific viscosity  𝜂 1   𝜂   – 
Reduced viscosity  𝜂 𝑐⁄   𝜂   m3 kg–1 b 
Intrinsic viscosity lim 𝜂 , 𝛾 → 0, 𝑐 → 0   𝜂   m3 kg–1 b 
Viscosity of matrix c  𝜂  Pa s 
Solvent contribution 
to the stress tensor 

 𝛔   Pa 

Polymeric 
contribution to the 
stress tensor 

 𝛔  Pa 

a Units of g mL–1  are often used. 
b Units of mL g–1 are often used. 
c Often used for nanocomposites, i.e., particles in a viscoelastic matrix. 
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TABLE VIII.  Suspensions 

Name Definition Symb
ol 

SI 
Units 

Volume fraction solid 𝑉 𝑉⁄   𝜙  – 
Maximum packing fraction  𝜙   – 
Suspending medium viscosity a  𝜂   Pa s 
Effective viscosity of suspension 𝛴 𝛾⁄   𝜂  Pa s 
Relative viscosity of suspension 𝜂 𝜂⁄   𝜂   – 
Particle contribution to η  𝜂   Pa s 
Local stress tensor  𝝈 𝒙, 𝑡   Pa 
Total bulk stress 𝚺 𝚺   𝚺  Pa 
Fluid (suspending medium) contribution  𝚺   Pa 
Particle contribution  𝚺   Pa 
First normal stress difference 𝛴 𝛴   𝑁   Pa 
Second normal stress difference 𝛴 𝛴   𝑁   Pa 
Dimensionless first normal stress difference 𝑁 𝜂 𝛾⁄   𝛶   – 
Dimensionless second normal stress 
difference 

𝑁 𝜂 𝛾⁄   𝛶   – 

Particle pressure 𝛴 𝛴 𝛴   𝛱  Pa 

Hydrodynamic particle stress  𝛴   Pa 
Interparticle stress  𝛴   Pa 
Brownian stress  𝛴   Pa 

a Sometimes the subscript f is used to indicate the fluid viscosity, but it seems more adequate 
to use m which stands for “medium” if the suspending fluid is itself rheologically complex or 
“matrix” in nanocomposites. Also, μ is often used to denote fluid viscosity. 

TABLE IX.  Interfacial and surface rheology  

Name Definition Symbol SI Units 
Interfacial or surface tension a  𝜎 ,   Pa m 
Surface pressure 𝜎 , 𝜎 , 𝐹 𝐴⁄   𝛱  Pa m 

Interfacial shear stress 𝐹 𝐿⁄   𝜎   Pa m 
Interfacial shear strain 𝑑𝑥 𝑑𝑥⁄   𝛾   – 
Interfacial shear rate 𝑑𝑣 𝑑𝑥⁄ 𝛾   s–1

Interfacial dilatational strain ln 𝐴 𝐴⁄   𝛼   – 
Interfacial dilatational strain rate 𝑑 ln 𝐴 𝑑𝑡⁄   𝛼   s–1 
Interfacial concentration – 𝛤  kg m–2 

Steady shear and dilatation 

Interfacial shear viscosity 𝜎 𝛾⁄   𝜂   Pa s m 
Interfacial dilatational viscosity 𝜎 𝛼⁄ 𝜅   Pa s m 

Simple shear 

Interfacial shear modulus 𝜎 𝛾⁄   𝐺   Pa m 
Relaxation modulus (shear) 𝜎 𝑡 𝛾⁄ 𝐺 𝑡   Pa m 
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Pure dilatation 

Interfacial dilatational modulus 𝜎 𝛼⁄   𝐾   Pa m 
Dilatational storage modulus 𝜎 𝑡 𝛼⁄   𝐾 𝑡   Pa m 
Gibbs elasticity (surfactants) b 𝑑𝜎 , 𝑑 ln 𝐴⁄   𝐾   Pa m 

Small-amplitude oscillatory shear 

Strain amplitude 𝛾 𝛾 sin 𝜔𝑡   𝛾   – 
Phase angle (loss angle) 𝜎 𝑡 𝜎 sin 𝜔𝑡 𝛿   𝛿  rad 
Stress amplitude 𝐹 𝐿⁄   𝜎   Pa m 
Complex interfacial shear modulus 𝐺 ′ 𝑖𝐺 ′′  𝐺 ∗  Pa m 
Absolute magnitude of 𝐺 ∗ 𝜎 𝛾⁄   |𝐺 ∗|  Pa m 
Storage modulus |𝐺 ∗| cos 𝛿 𝐺 ′  Pa m 
Loss modulus |𝐺 ∗| sin 𝛿  𝐺 ′′  Pa m 
Complex shear viscosity  𝜂 ′ 𝑖𝜂 ′′  𝜂 ∗  Pa s m 
Absolute magnitude of 𝜂 ∗ 𝜎 𝜔𝛾⁄   |𝜂 ∗|  Pa s m 
Dynamic shear viscosity (in phase with strain 
rate) 

𝐺 ′′ 𝜔⁄   𝜂 ′  Pa s m 

Out-of-phase (with strain rate) component of 
𝜂 ∗ 

𝐺 ′ 𝜔⁄   𝜂 ′′  Pa s m 

Small-amplitude oscillatory dilatation 

Dilatational strain amplitude 𝛼 𝛼 sin 𝜔𝑡   𝛼   – 
Complex dilatational modulus b 𝐾 ′ 𝑖𝐾 ′′  𝐾 ∗  Pa m 
Absolute magnitude of 𝐾 ∗ b 𝜎 𝛼⁄   |𝐾 ∗|  Pa m 
Storage dilatational modulus b 𝐾 ′  𝐾 ′  Pa m 
Loss dilatational modulus b 𝐾 ′′  𝐾 ′′  Pa m 
Complex dilatational viscosity 𝜅 ′ 𝑖𝜅 ′′ 𝜅 ∗  Pa s m 
Absolute magnitude of 𝜅 ∗ 𝜎 𝜔𝛿⁄   |𝜅 ∗|  Pa s m 
Dynamic dilatational viscosity 𝐾 ′′ 𝜔⁄   𝜅 ′  Pa s m 
Out-of-phase component of 𝜅 ∗ 𝐾 ′ 𝜔⁄   𝜅 ′′  Pa s m 

Other properties 

Creep compliance (shear) 𝛾 𝑡 𝜎⁄   𝐽 𝑡   Pa–1 m–1

Equilibrium compliance of solid 𝐽 𝑡 𝑡 → ∞   𝐽   Pa–1 m–1

Recoverable compliance 𝐽 𝑡 𝑡 𝜂⁄   𝐽 𝑡   Pa–1 m–1

Steady-state compliance of fluid 𝐽 𝑡 𝑡 𝜂⁄ 𝑡 → ∞   𝐽   Pa–1 m–1

Extensional viscosity 𝜂 𝑡, 𝜀 𝑡 → ∞   𝜂 𝜀  Pa s m 

a In some cases the symbols 𝛼 or 𝛤 are used to denote surface tension (not to be confused with 
interfacial dilatational strain or surface concentration, respectively). 
b Sometimes the symbol 𝐸 is used instead of 𝐾, but this should not be confused with Young’s 
modulus. The use of 𝐾 for a compression modulus is recommended. 
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TABLE X.  Molecular description of entangled polymers 

𝑎 tube diameter (typically in nm); average entanglement spacing / mesh size 
〈𝑅 〉 𝑀 𝑀⁄  

𝑏  Kuhn segment length a 
𝑓 tension in a chain segment (typically in N) 
𝑓max maximum tension in a chain segment 
𝑘B Boltzmann’s constant, 1.38 × 10–23 J K–1 
𝐿 mean tube contour length 
𝑀 molecular weight b, kg mol–1 

𝑀C critical molecular weight for effect of entanglements on 𝜂 , kg mol–1 
𝑀C molecular weight for effect of entanglements on 𝐽 , kg mol–1 
𝑀e molecular weight between entanglements c  𝜌𝑅𝑇 𝐺⁄  
𝑁K number of Kuhn segments in equivalent freely jointed chain a 
𝑝 packing length d  𝑀 〈𝑅 〉 𝜌𝑁A⁄  
𝑝  parameter to denote degree of branch point hopping within tube (fraction of tube 

diameter) 
𝑅 end-to-end distance of polymer molecule 
𝑅max fully extended chain length 
𝑠 tube contour variable (curvilinear coordinate along tube) 
𝑺 tube orientation tensor  
𝑍 number of entanglement segments per molecule e  𝑀 𝑀e⁄  

Greek letters 

𝛼 dilution exponent for 𝑀e 
𝜁 friction coefficient 
𝜁  monomer friction coefficient 
𝜆 chain stretch; stretch ratio 
𝜉 correlation length; characteristic size scale (blob) 
𝜏d reptation (tube disengagement) time 
𝜏e Rouse time of an entanglement strand  𝜏R 3𝜋⁄ 𝑍  
𝜏p relaxation time of the 𝑝th mode (𝑝 is the mode index) 
𝜏r Rouse reorientation relaxation time 
𝜏R Rouse stress relaxation time 𝜁𝑁 𝑏 6𝜋 𝑘B𝑇⁄  
𝜏s stretch relaxation time f 

a 𝑏K and 𝑁K are defined by the following relationships: 〈𝑅 〉 𝑏K𝑁K; 𝑅 𝑏K𝑁K 
b IUPAC recommends molar mass (MM), which has SI units of g mol–1. But molecular 
weight (MW) is widely used, and ACS accepts both terms. However, MW is formally a 
dimensionless ratio that is numerically very close to MM (g mol–1), and one cannot “change 
its units”. The number often called “molecular weight (kg mol–1)” is formally MW/1000 (no 
units). This quantity should more properly be called molar mass with units of kg mol–1. But it 
is so widely called molecular weight that it seems hopeless to try to change it now. 
c This is the definition originally proposed by John Ferry. The following alternative definition 
was introduced much later in the context of Doi-Edwards model. It should be used in the 
context of the development of, or comparisons with tube-model theories: 𝑀 𝜌𝑅𝑇 𝐺⁄ . 
d For a discussion of 𝑝 see Fetters et al. [Macromolecules 27, 4639 (1994)]. 
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e In tube-model theory, 𝑍 is called “number of tube segments” and is defined based on the 𝑀  
of footnote (c), i.e., using the Doi-Edwards  factor. Hence, when comparing with or using 
tube models, the  factor should be used. 
f The Rouse reorientation relaxation time was called the rotational relaxation time by Doi and 
Edwards and is conjectured to be equal to 2𝜏R. 

Table XI.  Stress and strain tensors 

Total stress tensor    𝝈 
Extra stress tensor    𝝉 
Strain tensor for linear viscoelasticity  𝜸 
Cauchy tensor     𝑪 
Finger tensor     𝑩  or  𝑪  
Doi-Edwards strain tensor   𝑸 
Rate-of-strain tensor a    𝜸 𝛁𝐯 𝛁𝐯  
Vorticity tensor    𝛀 𝛁𝐯 𝛁𝐯  

a An alternative definition, equal to  𝜸, is widely used in fluid mechanics and is acceptable, 
but the symbol 𝑫 should be used for this tensor to avoid confusion: 𝑫 ≡  𝛁𝐯 𝛁𝐯 , and 
in the fluid dynamics community a factor of  is also used as a prefactor in the defintion of the 
vorticity tensor 𝛀.

  

Table XII.  Dimensionless groups used to describe experimental regimes  

Bingham Number a 𝐵𝑛  (yield stress) / (shear stress) 
Boussinesq Number 𝐵𝑞  (surface shear stress) / [(bulk subphase shear stress) × 

(perimeter length along which the surface shear stress acts)] 
Capillary number 𝐶𝑎 𝜂𝑣 𝜎 ,⁄   (viscous forces) / (surface forces)  

or 𝐶𝑎 𝜂𝛾𝑅 𝜎 ,⁄  
Deborah Number b,c 𝐷𝑒  (characteristic time of fluid) / (duration of deformation) 

[e.g., 𝐷𝑒 𝜏𝜔] 
Péclet Number 𝑃�́� 𝛾𝑎 𝐷⁄   (rate of advection) / (rate of diffusion) 

[𝑎 = particle radius, 𝐷  = particle diffusion coefficient] 
Poisson ratio d 𝜈 𝑑𝜀transverse 𝑑𝜀axial⁄   negative ratio of transverse to axial 

strain 
Reynolds number 𝑅𝑒 𝜌𝑣𝑑 𝜂⁄   (inertial forces) / (viscous forces) 

[d = characteristic length scale] 
Weissenberg Number b,e,f 𝑊𝑖  (characteristic time of fluid) × (rate of deformation) 

[e.g., 𝑊𝑖 𝜏𝜀  or 𝜏𝛾 ] 

a Sometimes the wall shear stress is specifically used in the denominator of the definition, or 
the ratio (viscosity  velocity)/length. 
b The definitions and uses of these groups are explained in detail in “Weissenberg and 
Deborah Numbers – Their definition and use”, Rheol. Bulletin (The Society of Rheology), 
79(2) p.14 (2010). 
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c Specific Deborah numbers are often used, depending on the choice of characteristic time. 
Popular examples are: Deborah number based on Rouse relaxation time (𝐷𝑒R) and Deborah 
number based on longest relaxation time (𝐷𝑒d). 
d The Poisson ratio is also defined as function of Young’s and shear modulus (𝜈 𝐸 2𝐺⁄ 1) 
in three dimensions (and differently in two dimensions). 
e The Weissenberg number has sometimes been considered to be 𝑁 𝜎⁄ . However, this is a 
ratio of dependent rather than independent variables and thus describes data rather than 
experimental conditions. The quantity 𝑁 𝜎⁄  is often called the stress ratio. 
f Specific Weissenberg numbers are often used, depending on the characteristic time. Popular 
examples are: Weissenberg number based on Rouse relaxation time (𝑊𝑖R) and Weissenberg 
number based on longest relaxation time (𝑊𝑖d). 

Table XIII. Frequently used constants 

𝑁A Avogadro’s number, 6.023  1023 molecules mol–1 

𝑅 Ideal gas constant, 8.314 J mol–1 K–1 

𝑘B Boltzmann’s constant, 1.38 × 10–23  J K–1 


