Official Nomenclature of US and European Societies of Rheology (2018-10)

Assembled by J. M. Dealy and D. Vlassopoulos, with advice from G. G. Fuller, R. G. Larson, J. Mewis, D. J. Read, J. Vermant, N. J. Wagner, and G. McKinley.

TABLE I. Steady simple shear (viscometric flow)

Name	Definition	Symbol	SI units ${ }^{\text {a }}$
Direction of flow (simple shear)		x_{1}	m
Direction of velocity gradient (simple shear)		x_{2}	m
Neutral direction (simple shear)		x_{3}	m
Shear or normal force	$m a$	F	N
Velocity	$d x_{1} / d t$	v_{1}	$\mathrm{~m} \mathrm{~s}^{-1}$
Acceleration	$d v_{1} / d t$	a_{1}	$\mathrm{~m} \mathrm{~s}^{-2}$
Shear stress ${ }^{\mathrm{b}}$	F / A	σ	Pa
Shear strain	$d x_{1} / d x_{2}$	γ	-
Shear rate	$\left\|d v_{1} / d x_{2}\right\|$	$\dot{\gamma}$	s^{-1}
Vorticity ${ }^{\text {c }}$	$-d v_{1} / d x_{2}$	ω_{3}	$\mathrm{~s}^{-1}$
Viscosity	$\|\sigma\| / \dot{\gamma}$	$\eta(\dot{\gamma})$	Pa s
Yield stress		σ_{y}	Pa
Yield strain		γ_{y}	-
First normal stress difference	$\sigma_{11}-\sigma_{22}$	N_{1}	Pa
Second normal stress difference	$\sigma_{22}-\sigma_{33}$	N_{2}	Pa
First normal stress coefficient	$N_{1} / \dot{\gamma}^{2}$	Ψ_{1}	Pa s
Second normal stress coefficient	$N_{2} / \dot{\gamma}^{2}$	Ψ_{2}	Pa s
Normal stress ratio	$-N_{1} / N_{2}$	$\Psi(\dot{\gamma})$	-
Zero-shear viscosity (limiting low shear rate viscosity)	$\eta(\dot{\gamma} \rightarrow 0)$	η_{0}	Pa s
Zero-shear first normal stress coefficient	$\Psi_{1}(\dot{\gamma} \rightarrow 0)$	$\Psi_{1.0}$	$\mathrm{~Pa} \mathrm{~s}^{2}$
Consistency index in power law for viscosity	$\eta=K \dot{\gamma}^{n-1}$	n	-
Constant in power law for viscosity	see above equation	K	$\mathrm{~Pa} \mathrm{~s}^{n}$

${ }^{\text {a }}$ SI allows either a dot between units or a space, as used here.
${ }^{\mathrm{b}} A$ is the area in m^{2}.
${ }^{\mathrm{c}}$ In the fluid dynamics community a prefactor of $1 / 2$ is used in the definition of the vorticity.

TABLE II. Linear viscoelasticity

Name	Definition	Symbol	Units	
Simple shear				
Shear modulus of a solid	σ / γ	G	Pa	
Relaxation modulus	$\sigma(t) / \gamma$	$G(t)$	Pa	
Relaxation strength in discrete spectrum	-	g_{i}	Pa	
Relaxation time in discrete spectrum	-	τ_{i}	S	
Continuous relaxation spectrum	$-{ }^{\text {a }}$	$H(\tau)$	Pa	
Orthogonal superposition complex modulus ${ }^{\text {b,c }}$	-	$G_{\perp}^{*}(\omega, \dot{\gamma})$	Pa	
Parallel superposition complex modulus ${ }^{\text {b,c }}$	$-$	$G_{\\|}^{*}(\omega, \dot{\gamma})$	Pa	
Memory function	$-d G(s) / d s$	$m(s)$	$\mathrm{Pa} \mathrm{s}^{-1}$	
Creep compliance (shear)	$\gamma(t) / \sigma$	$J(t)$	Pa^{-1}	
Equilibrium compliance of solid	$J(t)(t \rightarrow \infty)$	J_{e}	Pa^{-1}	
Recoverable compliance	$J(t)-t / \eta_{0}$	$J_{r}(t)$	Pa^{-1}	
Steady-state compliance of fluid	$J(t)-t / \eta_{0}(t \rightarrow \infty)$	J_{S}^{0}	Pa^{-1}	
Continuous retardation spectrum ${ }^{\text {d }}$	- ${ }^{\text {d }}$	$L(\tau)$	Pa^{-1}	
Small-amplitude oscillatory shear				
Strain amplitude	$\gamma(t)=\gamma_{0} \sin \omega t$	γ_{0}	-	
Loss angle (phase angle)	$\sigma(t)=\sigma_{0} \sin (\omega t+\delta)$	δ	rad	
Stress amplitude	$\sigma(t)=\sigma_{0} \sin (\omega t+\delta)$	σ_{0}	Pa	
Complex modulus	$G^{\prime}+i G^{\prime \prime}$	G^{*}	Pa	
Absolute magnitude of G^{*}	σ_{0} / γ_{0}	$\begin{aligned} & \left\|G^{*}\right\| \text { or } \\ & G_{d} \\ & \hline \end{aligned}$	Pa	
Storage modulus	$G_{d} \cos \delta$	G^{\prime}	Pa	
Loss modulus	$G_{d} \sin \delta$	$G^{\prime \prime}$	Pa	
Complex viscosity	$\eta^{\prime}-i \eta^{\prime \prime}$	η^{*}	Pa s	
Absolute magnitude of η^{*}	$\sigma_{0} / \omega \gamma_{0}$	$\left\|\eta^{*}\right\|$	Pas	
Dynamic viscosity (in phase with strain rate)	$G^{\prime \prime} / \omega$	η^{\prime}	Pas	
Out-of-phase (with strain rate) component of η^{*}	G^{\prime} / ω	$\eta^{\prime \prime}$	Pa s	
Complex compliance	$J^{\prime}-i J^{\prime \prime}$	J^{*}	Pa^{-1}	
Absolute magnitude of J^{*}	$\gamma_{0} / \sigma_{0}=1 / G_{d}$	$\left\|J^{*}\right\|$	Pa^{-1}	
Storage compliance	$\left(\gamma_{0} / \sigma_{0}\right) \cos \delta$	J^{\prime}	Pa^{-1}	
Loss compliance	$\left(\gamma_{0} / \sigma_{0}\right) \sin \delta$	$J^{\prime \prime}$	Pa^{-1}	
Plateau modulus ${ }^{\text {e }}$	$-^{\text {e }}$	G_{N}^{0}	Pa	
Tensile (Uniaxial) Extension ${ }^{\text {c }}$				
Net tensile stress	$\sigma_{z z}-\sigma_{r r}$	σ_{E}	Pa	
Hencky strain	$\ln \left(L / L_{0}\right)$	ε	-	
Hencky strain rate	$d(\ln L) / d t$	ε	s^{-1}	
Tensile relaxation modulus	$\sigma_{E}(t) / \varepsilon_{0}$	$E(t)$	Pa	
Tensile creep compliance	$\varepsilon_{0}(t) / \sigma_{E}$	$D(t)$	Pa^{-1}	

${ }^{\mathrm{a}} G(t)=\int_{-\infty}^{\infty} H(\tau)[\exp (-t / \tau)] d(\ln \tau)$
${ }^{\mathrm{b}}$ The same subscripts apply to definitions of storage and loss moduli and viscosities.
${ }^{\text {c }}$ Also applies to nonlinear phenomena in uniaxial extension.
${ }^{\mathrm{d}} J(t)=\int_{-\infty}^{\infty} L(\tau)[1-\exp (t / \tau)] d(\ln \tau)$
${ }^{\mathrm{e}}$ Because there is not a true plateau in $G(t)$ or $G^{\prime}(\omega), G_{N}^{0}$ is inferred from $G^{\prime}(\omega)$ and $G^{\prime \prime}(\omega)$ using methods reviewed by Liu et al. [Polymer 47, 4461-4479 (2006)].

TABLE III. Shift factors for time-temperature superposition

Name	Definition	Symbol	SI Units
Vertical shift factor ${ }^{\text {a }}$	$b_{T} G^{\prime}\left(T, \omega a_{T}\right)=G^{\prime}\left(T_{0}, \omega\right)$	b_{T}	-
Horizontal shift factor	$b_{T} G^{\prime}\left(T, \omega a_{T}\right)=G^{\prime}\left(T_{0}, \omega\right)$	a_{T}	-
First WLF coefficient	$\log _{10} a_{T}=\frac{-c_{1}\left(T-T_{0}\right)}{\left[c_{2}+\left(T-T_{0}\right)\right]}$	c_{1}	-
Second WLF coefficient	$\log _{10} a_{T}=\frac{-c_{1}\left(T-T_{0}\right)}{\left[c_{2}+\left(T-T_{0}\right)\right]}$	c_{2}	K
Activation energy for flow	$a_{T}=\exp \left[\frac{E_{a}}{R}\left(\frac{1}{T}-\frac{1}{T_{0}}\right)\right]$	E_{a}	$\mathrm{~kJ} \mathrm{~mol}^{-1}$

${ }^{\text {a }}$ For rubbers, b_{T} is given by $T_{0} \rho_{0} / T \rho$, where ρ is mass density, with $\rho_{0}=\rho\left(T_{0}\right)$ [J. D. Ferry, Viscoelastic properties of polymers, $3^{\text {rd }}$ Ed., Wiley, NY, 1980]. It has also been found to be appropriate for polymers in general.

TABLE IV. Nonlinear viscoelasticity in shear

Name	Definition	Symbol	SI Units
Stress relaxation (step strain)			
Strain amplitude		γ_{0}	-
Relaxation modulus (nonlinear)	$\sigma(t) / \gamma_{0}$	$G\left(t, \gamma_{0}\right)$	Pa
Damping function in shear	$G\left(t, \gamma_{0}\right) / G(t)$	$h\left(\gamma_{0}\right)$	-
First normal stress relaxation function		$N_{1}\left(t, \gamma_{0}\right)$	Pa
Second normal stress relaxation function		$N_{2}\left(t, \gamma_{0}\right)$	Pa
First normal stress relaxation coefficient	$N_{1}\left(t, \gamma_{0}\right) / \gamma_{0}^{2}$	$\Psi_{1}\left(t, \gamma_{0}\right)$	Pa
Second normal stress relaxation coefficient	$N_{2}\left(t, \gamma_{0}\right) / \gamma_{0}^{2}$	$\Psi_{2}\left(t, \gamma_{0}\right)$	Pa
Start-up of steady shear (at fixed shear rate)			
Shear stress growth function		$\sigma^{+}(t, \dot{\gamma})$	Pa
Shear stress growth coefficient	$\sigma^{+}(t, \dot{\gamma}) / \dot{\gamma}$	$\eta^{+}(t, \dot{\gamma})$	Pas
First normal stress growth function	$\sigma_{11}-\sigma_{22}$	$N_{1}^{+}(t, \dot{\gamma})$	Pa
First normal stress growth coefficient	$N_{1}^{+}(t, \dot{\gamma}) / \dot{\gamma}^{2}$	$\Psi_{1}^{+}(t, \dot{\gamma})$	$\mathrm{Pa} \mathrm{s}^{2}$
Second normal stress growth function	$\sigma_{22}-\sigma_{33}$	$N_{2}^{+}(t, \dot{\gamma})$	Pa
Second normal stress growth coefficient	$N_{2}^{+}(t, \dot{\gamma}) / \dot{\gamma}^{2}$	$\Psi_{2}^{+}(t, \dot{\gamma})$	Pa s ${ }^{2}$
Stress Ratio	$N_{1}(\dot{\gamma}) / \sigma(\dot{\gamma})$	SR	-
Cessation of steady shear ($\dot{\gamma}=0$ from $t=0)$			
Shear stress decay function		$\sigma^{-}(t, \dot{\gamma})$	Pa
Shear stress decay coefficient	$\sigma^{-}(t, \dot{\gamma}) / \dot{\gamma}$	$\eta^{-}(t, \dot{\gamma})$	Pas
First normal stress decay function	$\sigma_{11}-\sigma_{22}$	$N_{1}^{-}(t, \dot{\gamma})$	Pa
First normal stress decay coefficient	$N_{1}^{-}(t, \dot{\gamma}) / \dot{\gamma}^{2}$	$\Psi_{1}^{-}(t, \dot{\gamma})$	$\mathrm{Pa} \mathrm{s}{ }^{2}$
Second normal stress decay function	$\sigma_{22}-\sigma_{33}$	$N_{2}^{-}(t, \dot{\gamma})$	Pa
Second normal stress decay coefficient	$N_{2}^{-}(t, \dot{\gamma}) / \dot{\gamma}^{2}$	$\Psi_{2}^{-}(t, \dot{\gamma})$	Pa s ${ }^{2}$
Creep and creep recovery (recoil)			
Creep compliance	$\gamma(t, \sigma) / \sigma$	$J(t, \sigma)$	Pa^{-1}
Steady-state compliance ${ }^{\text {a }}$	$J(t \rightarrow \infty, \sigma)$	$J_{s}(\sigma)$	Pa^{-1}
Recoverable strain (after t_{0} when $\sigma \rightarrow 0$)	$\begin{gathered} \gamma\left[t_{0}, \sigma\right]-\gamma[t, \sigma] \\ t>t_{0} \end{gathered}$	$\begin{aligned} & \gamma_{r}\left(t^{\prime}, \sigma\right) \\ & t^{\prime}=t-t_{0} \end{aligned}$	-
Ultimate recoil	$\gamma_{r}\left(t^{\prime} \rightarrow \infty, \sigma\right)$	$\gamma_{\infty}(\sigma)$	-
Steady-state recoverable compliance ${ }^{\text {a }}$	$\gamma_{\infty}(\sigma) / \sigma$	$J_{r}(\sigma)$	Pa^{-1}

${ }^{\text {a }}$ Although measured in different ways, the steady-state compliance and the steady-state recoverable compliance should be equal to each other according to the Boltzmann principle.

TABLE V. Nonlinear viscoelasticity in extension.

Name	Definition	Symbol	SI Units
Tensile (uniaxial) extension			$\left(L-L_{0}\right) / L_{0}$
Engineering strain ${ }^{\text {a }}$	ε	-	
Engineering stress ${ }^{\text {a }}$	F / A_{0}	σ	Pa
Young's modulus of a solid	σ / ε	E	Pa
Net tensile stress (true)	$\sigma_{z z}-\sigma_{r r}$	σ_{ε}	Pa
Hencky strain	$\ln \left(L / L_{0}\right)$	ε or ϵ	-
Hencky strain rate	$d(\ln L) / d t$	$\dot{\varepsilon}$ or $\dot{\epsilon}$	s^{-1}
Tensile stress growth function		$\sigma_{E}^{+}(t, \dot{\varepsilon})$	Pa
Tensile stress growth coefficient	$\sigma_{E}^{+}(t, \dot{\varepsilon}) / \dot{\varepsilon}$	$\eta_{E}^{+}(t, \dot{\varepsilon})$	Pa s
Extensional viscosity	$\eta_{E}^{+}(t, \dot{\varepsilon}) t \rightarrow \infty$	$\eta_{E}(\dot{\varepsilon})$	Pa s
Tensile creep compliance	$\varepsilon(t) / \sigma_{E}$	$D\left(t, \sigma_{E}\right)$	Pa
Recoverable strain (after t_{0} where $\left.\sigma_{\mathrm{E}} \rightarrow 0\right)$	$\varepsilon\left[t_{0}, \sigma_{E}\right]-\varepsilon\left[t, \sigma_{E}\right]$	$\varepsilon_{r}\left(t^{\prime}, \varepsilon\right)$ $t^{\prime}=t-t_{0}$	-
Biaxial extension (symmetrical)		$t>t_{0}$	
Biaxial strain	$\ln \left(R / R_{0}\right)$	ε_{B}	-
Biaxial strain rate	$d(\ln R) / d t$	$\dot{\varepsilon}_{B}$	$\mathrm{~s}^{-1}$
Net stretching stress	$\sigma_{r r}-\sigma_{z z}$	σ_{B}	Pa
Biaxial stretch growth function		$\sigma_{B}^{+}\left(t, \dot{\varepsilon}_{B}\right)$	Pa
Biaxial stretch growth coefficient	$\sigma_{B}^{+}\left(t, \dot{\varepsilon}_{B}\right) / \dot{\varepsilon}_{B}$	$\eta_{B}^{+}\left(t, \dot{\varepsilon}_{B}\right)$	Pa s
Biaxial stress decay coefficient	$\sigma_{B}^{-\left(t, \dot{\varepsilon}_{B}\right) / \dot{\varepsilon}_{B}}$	$\eta_{B}^{-}\left(t, \dot{\varepsilon}_{B}\right)$	Pa s
Biaxial extensional viscosity	$\sigma_{B}^{+}\left(t \rightarrow \infty, \dot{\varepsilon}_{B}\right) / \dot{\varepsilon}_{B}$	$\eta_{B}\left(\dot{\varepsilon}_{B}\right)$	Pa s
Biaxial creep compliance	$\varepsilon_{B}(t) / \sigma_{B}$	$D\left(t, \sigma_{B}\right)$	$\mathrm{Pa}{ }^{-1}$

${ }^{a}$ In the mechanics literature, the same symbols are often used for both engineering and true stress and strain, but they are only equivalent in the limit of very small deformations.

TABLE VI. Rheometry

Name	Definition	Symbol	SI Units	
Capillary rheometers				
Apparent wall shear stress ${ }^{\mathrm{a}}$	$P_{d} R / 2 L$	σ_{A}	Pa	
Apparent wall shear rate	$4 Q / \pi R^{3}$	$\dot{\gamma}_{A}$	$\mathrm{~s}^{-1}$	
Wall shear stress	$-\sigma_{r Z}(r=R)$	σ_{W}	Pa	
Wall shear rate	$-d v_{z} / d r(r=R)$	$\dot{\gamma}_{W}$	$\mathrm{~s}^{-1}$	
Cone-plate rheometers				
Cone angle	Figure 1	β	rad	
Angular rotation	Figure 1	φ	rad	
Angular velocity	$d \varphi / d t$	Ω	$\mathrm{rad} \mathrm{s}^{-1}$	
Torque ${ }^{\mathrm{b}}$	$2 \pi R^{3} \sigma_{\varphi \theta} / 3$	M	N m	
Normal thrust	Figure 1	F_{Z}	N	

${ }^{\text {a }} P_{d}=$ driving (reservoir) pressure (exit pressure neglected)
${ }^{\mathrm{b}}$ Approximation valid for $\beta<0.1 \mathrm{rad}$.

Figure 1. Symbols describing cone-plate geometry.

TABLE VII. Solutions

Name	Definition	Symbol	SI units
Concentration		c	$\mathrm{~kg} \mathrm{~m}^{-3 \mathrm{a}}$
Overlap concentration		c^{*}	$\mathrm{~kg} \mathrm{~m}^{3 \mathrm{a}}$
Solvent viscosity		η_{s}	Pa s
Relative viscosity	$\left(\eta / \eta_{s}\right)$	η_{r}	-
Specific viscosity	$\left(\eta_{r}-1\right)$	$\eta_{s p}$	-
Reduced viscosity	$\eta_{s p} / c$	$\eta_{r e d}$	$\mathrm{~m}^{3} \mathrm{~kg}^{-1 \mathrm{~b}}$
Intrinsic viscosity	$\lim \left(\eta_{\mathrm{red}}, \dot{\gamma} \rightarrow 0, c \rightarrow 0\right)$	$[\eta]$	$\mathrm{m}^{3} \mathrm{~kg}^{-1 \mathrm{~b}}$
Viscosity of matrix ${ }^{\mathrm{c}}$		η_{m}	Pa s
Solvent contribution to the stress tensor		$\boldsymbol{\sigma}^{s}$	Pa
Polymeric contribution to the stress tensor		$\boldsymbol{\sigma}^{p}$	Pa

${ }^{\text {a }}$ Units of $\mathrm{g} \mathrm{mL}{ }^{-1}$ are often used.
${ }^{\mathrm{b}}$ Units of $\mathrm{mL} \mathrm{g}^{-1}$ are often used.
${ }^{\mathrm{c}}$ Often used for nanocomposites, i.e., particles in a viscoelastic matrix.

TABLE VIII. Suspensions

Name	Definition	$\begin{array}{\|l} \hline \begin{array}{l} \text { Symb } \\ \text { ol } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SI } \\ \text { Units } \end{array}$
Volume fraction solid	$V_{\text {solid }} / V_{\text {suspension }}$	ϕ	-
Maximum packing fraction		$\phi_{\max }$	-
Suspending medium viscosity ${ }^{\text {a }}$		η_{m}	Pas
Effective viscosity of suspension	$\Sigma_{12} / \dot{\gamma}$	η	Pas
Relative viscosity of suspension	η / η_{f}	η_{r}	-
Particle contribution to η		η_{p}	Pa S
Local stress tensor		$\boldsymbol{\sigma}(\boldsymbol{x}, t)$	Pa
Total bulk stress	$\mathbf{\Sigma}^{f}+\mathbf{\Sigma}^{p}$	Σ	Pa
Fluid (suspending medium) contribution		Σ^{f}	Pa
Particle contribution		Σ^{p}	Pa
First normal stress difference	$\Sigma_{11}-\Sigma_{22}$	N_{1}	Pa
Second normal stress difference	$\Sigma_{22}-\Sigma_{33}$	N_{2}	Pa
Dimensionless first normal stress difference	$-N_{1} / \eta_{f} \dot{\gamma}$	r_{1}	-
Dimensionless second normal stress difference	$-N_{2} / \eta_{f} \dot{\gamma}$	r_{2}	-
Particle pressure	$-\frac{1}{3}\left(\Sigma_{11}^{p}+\Sigma_{22}^{p}+\Sigma_{33}^{p}\right)$	Π	Pa
Hydrodynamic particle stress		Σ^{H}	Pa
Interparticle stress		$\Sigma^{I P}$	Pa
Brownian stress		Σ^{B}	Pa

${ }^{\text {a }}$ Sometimes the subscript f is used to indicate the fluid viscosity, but it seems more adequate to use m which stands for "medium" if the suspending fluid is itself rheologically complex or "matrix" in nanocomposites. Also, μ is often used to denote fluid viscosity.

TABLE IX. Interfacial and surface rheology

Name	Definition	Symbol	SI Units
Interfacial or surface tension ${ }^{\text {a }}$		$\sigma_{\alpha, \beta}$	Pam
Surface pressure	$\sigma_{\alpha, \beta}^{0}-\sigma_{\alpha, \beta}\left(F^{s} / A\right)$	Π	Pam
Interfacial shear stress	F^{s} / L	σ^{s}	Pam
Interfacial shear strain	$d x_{1} / d x_{2}$	γ^{s}	-
Interfacial shear rate	$d v_{1} / d x_{2}$	$\dot{\gamma}^{s}$	s^{-1}
Interfacial dilatational strain	$\ln \left(A / A_{0}\right)$	α^{s}	-
Interfacial dilatational strain rate	$d(\ln A) / d t$	$\dot{\alpha}^{s}$	s^{-1}
Interfacial concentration	-	Γ	$\mathrm{kg} \mathrm{m}^{-2}$
Steady shear and dilatation			
Interfacial shear viscosity	$\sigma^{s} / \dot{\gamma}^{s}$	η^{s}	Pasm
Interfacial dilatational viscosity	$\sigma^{s} / \dot{\alpha}^{s}$	κ^{s}	Pasm
Simple shear			
Interfacial shear modulus	σ^{s} / γ^{s}	G^{s}	Pam
Relaxation modulus (shear)	$\sigma^{s}(t) / \gamma^{s}$	$G^{s}(t)$	Pam

Pure dilatation			
Interfacial dilatational modulus	σ^{s} / α^{s}	K^{s}	Pa m
Dilatational storage modulus	$\sigma^{s}(t) / \alpha^{s}$	$K^{s}(t)$	Pam
Gibbs elasticity (surfactants) ${ }^{\text {b }}$	$d \sigma_{\alpha, \beta} / d(\ln A)$	$K_{\text {П }}$	Pa m
Small-amplitude oscillatory shear			
Strain amplitude	$\gamma^{s}=\gamma_{0}^{s} \sin (\omega t)$	γ_{0}^{s}	-
Phase angle (loss angle)	$\sigma^{s}(t)=\sigma_{0}^{s} \sin (\omega t+\delta)$	δ	rad
Stress amplitude	F^{s} / L	σ_{0}^{s}	Pam
Complex interfacial shear modulus	$G^{s \prime}+i G^{\text {s' }}$	$G^{s *}$	Pam
Absolute magnitude of $G^{\text {s* }}$	$\sigma_{0}^{s} / \gamma_{0}^{s}$	$\left\|G^{s *}\right\|$	Pam
Storage modulus	$\left\|G^{S *}\right\| \cos \delta$	$G^{\text {s' }}$	Pam
Loss modulus	$\left\|G^{s *}\right\| \sin \delta$	$G^{\text {st }}$	Pam
Complex shear viscosity	$\eta^{s \prime}-i \eta^{s \prime \prime}$	$\eta^{s *}$	Pa sm
Absolute magnitude of $\eta^{s *}$	$\sigma_{0}^{s} / \omega \gamma_{0}^{s}$	$\left\|\eta^{s *}\right\|$	Pa s m
Dynamic shear viscosity (in phase with strain rate)	$G^{s \prime \prime} / \omega$	$\eta^{s \prime}$	Pasm
Out-of-phase (with strain rate) component of $\eta^{s *}$	$G^{s \prime} / \omega$	$\eta^{s \prime \prime}$	Pa sm
Small-amplitude oscillatory dilatation			
Dilatational strain amplitude	$\alpha^{s}=\alpha_{0}^{s} \sin (\omega t)$	α_{0}^{S}	-
Complex dilatational modulus ${ }^{\text {b }}$	$K^{s^{\prime}}+i K^{s \prime \prime}$	$K^{s *}$	Pam
Absolute magnitude of $K^{s *} \mathrm{~b}$	$\sigma_{0}^{S} / \alpha_{0}^{S}$	$\left\|K^{s *}\right\|$	Pam
Storage dilatational modulus ${ }^{\text {b }}$	$K^{\text {S }}$	$K^{\text {S }}$	Pam
Loss dilatational modulus ${ }^{\text {b }}$	$K^{\text {s }}$	$K^{s \prime \prime}$	Pam
Complex dilatational viscosity	$\kappa^{s^{\prime}}+i \kappa^{s^{\prime \prime}}$	$\kappa^{s *}$	Pa sm
Absolute magnitude of $\kappa^{s *}$	$\sigma_{0}^{S} / \omega \delta_{0}^{S}$	$\left\|\kappa^{s *}\right\|$	Pasm
Dynamic dilatational viscosity	$K^{s \prime \prime} / \omega$	$\kappa^{s \prime}$	Pa sm
Out-of-phase component of $\kappa^{\text {S* }}$	$K^{s \prime} / \omega$	$\kappa^{\text {s/ }}$	Pa s m
Other properties			
Creep compliance (shear)	$\gamma^{s}(t) / \sigma^{s}$	$J^{s}(t)$	$\mathrm{Pa}^{-1} \mathrm{~m}^{-1}$
Equilibrium compliance of solid	$J^{s}(t)(t \rightarrow \infty)$	J_{e}^{s}	$\mathrm{Pa}^{-1} \mathrm{~m}^{-1}$
Recoverable compliance	$J^{s}(t)-t / \eta_{0}^{s}$	$J_{r}^{s}(t)$	$\mathrm{Pa}^{-1} \mathrm{~m}^{-1}$
Steady-state compliance of fluid	$J^{s}(t)-t / \eta_{0}^{s}(t \rightarrow \infty)$	J_{0}^{S}	$\mathrm{Pa}^{-1} \mathrm{~m}^{-1}$
Extensional viscosity	$\eta_{E}^{s}\left(t, \dot{\varepsilon}^{s}\right)(t \rightarrow \infty)$	$\eta_{E}^{S}\left(\dot{\varepsilon}^{s}\right)$	Pa s m
${ }^{\text {a }}$ In some cases the symbols α or Γ are used to denote surface tension (not to be confused with interfacial dilatational strain or surface concentration, respectively).			ed with oung's

TABLE X. Molecular description of entangled polymers

a tube diameter (typically in nm); average entanglement spacing / mesh size $\sqrt{\left\langle R^{2}\right\rangle_{0} M_{e} / M}$
$b_{\mathrm{K}} \quad$ Kuhn segment length ${ }^{\text {a }}$
$f \quad$ tension in a chain segment (typically in N)
$f_{\text {max }}$ maximum tension in a chain segment
$k_{\mathrm{B}} \quad$ Boltzmann's constant, $1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
L mean tube contour length
M molecular weight ${ }^{\mathrm{b}}, \mathrm{kg} \mathrm{mol}^{-1}$
$M_{\mathrm{C}} \quad$ critical molecular weight for effect of entanglements on $\eta_{0}, \mathrm{~kg} \mathrm{~mol}^{-1}$
$M_{\mathrm{C}}^{\prime} \quad$ molecular weight for effect of entanglements on $J_{s}^{0}, \mathrm{~kg} \mathrm{~mol}^{-1}$
$M_{\mathrm{e}} \quad$ molecular weight between entanglements ${ }^{\mathrm{c}}\left(\rho R T / G_{N}^{0}\right)$
$N_{\mathrm{K}} \quad$ number of Kuhn segments in equivalent freely jointed chain ${ }^{\mathrm{a}}$
$p \quad$ packing length ${ }^{\text {d }}\left(M /\left[\left\langle R^{2}\right\rangle_{0} \rho N_{\mathrm{A}}\right]\right)$
p^{2} parameter to denote degree of branch point hopping within tube (fraction of tube diameter)
$R \quad$ end-to-end distance of polymer molecule
$R_{\text {max }}$ fully extended chain length
$s \quad$ tube contour variable (curvilinear coordinate along tube)
\boldsymbol{S} tube orientation tensor
$Z \quad$ number of entanglement segments per molecule ${ }^{\mathrm{e}}\left(M / M_{\mathrm{e}}\right)$

Greek letters

$\alpha \quad$ dilution exponent for M_{e}
$\zeta \quad$ friction coefficient
$\zeta_{0} \quad$ monomer friction coefficient
$\lambda \quad$ chain stretch; stretch ratio
$\xi \quad$ correlation length; characteristic size scale (blob)
$\tau_{\mathrm{d}} \quad$ reptation (tube disengagement) time
$\tau_{\mathrm{e}} \quad$ Rouse time of an entanglement strand ($\tau_{\mathrm{R}} / 3 \pi^{2} Z^{2}$)
$\tau_{\mathrm{p}} \quad$ relaxation time of the $p^{\text {th }}$ mode (p is the mode index)
$\tau_{\mathrm{r}} \quad$ Rouse reorientation relaxation time
$\tau_{\mathrm{R}} \quad$ Rouse stress relaxation time $\left[\left(\zeta N^{2} b^{2}\right) /\left(6 \pi^{2} k_{\mathrm{B}} T\right)\right]$
$\tau_{\mathrm{s}} \quad$ stretch relaxation time ${ }^{\mathrm{f}}$
${ }^{\mathrm{a}} b_{\mathrm{K}}$ and N_{K} are defined by the following relationships: $\left\langle R^{2}\right\rangle=b_{\mathrm{K}}^{2} N_{\mathrm{K}} ; R_{\max }=b_{\mathrm{K}} N_{\mathrm{K}}$
${ }^{\mathrm{b}}$ IUPAC recommends molar mass (MM), which has SI units of $\mathrm{g} \mathrm{mol}^{-1}$. But molecular weight (MW) is widely used, and ACS accepts both terms. However, MW is formally a dimensionless ratio that is numerically very close to $\mathrm{MM}\left(\mathrm{g} \mathrm{mol}^{-1}\right)$, and one cannot "change its units". The number often called "molecular weight $\left(\mathrm{kg} \mathrm{mol}^{-1}\right)$ " is formally MW/1000 (no units). This quantity should more properly be called molar mass with units of $\mathrm{kg} \mathrm{mol}^{-1}$. But it is so widely called molecular weight that it seems hopeless to try to change it now.
${ }^{\mathrm{c}}$ This is the definition originally proposed by John Ferry. The following alternative definition was introduced much later in the context of Doi-Edwards model. It should be used in the context of the development of, or comparisons with tube-model theories: $M_{e}=\frac{4}{5} \rho R T / G_{N}^{0}$.
${ }^{\mathrm{d}}$ For a discussion of p see Fetters et al. [Macromolecules 27, 4639 (1994)].
${ }^{\mathrm{e}}$ In tube-model theory, Z is called "number of tube segments" and is defined based on the M_{e} of footnote (c), i.e., using the Doi-Edwards $\frac{4}{5}$ factor. Hence, when comparing with or using tube models, the $\frac{4}{5}$ factor should be used.
${ }^{\mathrm{f}}$ The Rouse reorientation relaxation time was called the rotational relaxation time by Doi and Edwards and is conjectured to be equal to $2 \tau_{\mathrm{R}}$.

Table XI. Stress and strain tensors

Total stress tensor $\boldsymbol{\sigma}$
Extra stress tensor $\boldsymbol{\tau}$
Strain tensor for linear viscoelasticity $\quad \boldsymbol{\gamma}$
Cauchy tensor
Finger tensor
Doi-Edwards strain tensor
Rate-of-strain tensor ${ }^{\text {a }}$
C

Vorticity tensor $\quad \boldsymbol{\Omega}=\boldsymbol{\nabla} \mathbf{v}-(\boldsymbol{\nabla} \mathbf{v})^{T}$
${ }^{\text {a }}$ An alternative definition, equal to $\frac{1}{2} \dot{\boldsymbol{\gamma}}$, is widely used in fluid mechanics and is acceptable, but the symbol \boldsymbol{D} should be used for this tensor to avoid confusion: $\boldsymbol{D} \equiv \frac{1}{2}\left[\boldsymbol{\nabla} \mathbf{v}+(\boldsymbol{\nabla} \mathbf{v})^{T}\right]$, and in the fluid dynamics community a factor of $\frac{1}{2}$ is also used as a prefactor in the defintion of the vorticity tensor $\boldsymbol{\Omega}$.

Table XII. Dimensionless groups used to describe experimental regimes

Bingham Number ${ }^{\text {a }}$
Boussinesq Number
Capillary number

Péclet Number
Poisson ratio ${ }^{d}$
Reynolds number
Weissenberg Number be,f

Deborah Number ${ }^{\mathrm{b}, \mathrm{c}} \quad D e \equiv$ (characteristic time of fluid) / (duration of deformation)
[e.g., $D e=\tau \omega$]
$B n \equiv$ (yield stress) / (shear stress)
$B q \equiv($ surface shear stress $) /[($ bulk subphase shear stress $) \times$ (perimeter length along which the surface shear stress acts)]
$C a=\eta v / \sigma_{\alpha, \beta} \equiv$ (viscous forces) $/$ (surface forces)
or $C a=\eta \dot{\gamma} R / \sigma_{\alpha, \beta}$

Pé $=\dot{\gamma} a^{2} / D_{o} \equiv$ (rate of advection) / (rate of diffusion)
[$a=$ particle radius, $D_{o}=$ particle diffusion coefficient]
$v=-d \varepsilon_{\text {transverse }} / d \varepsilon_{\text {axial }} \equiv$ negative ratio of transverse to axial strain
$R e=\rho v d / \eta \equiv$ (inertial forces) $/($ viscous forces $)$
[$d=$ characteristic length scale]
$W i \equiv($ characteristic time of fluid $) \times($ rate of deformation $)$
[e.g., Wi $=\tau \dot{\varepsilon}$ or $\tau \dot{\gamma}$]
${ }^{\text {a }}$ Sometimes the wall shear stress is specifically used in the denominator of the definition, or the ratio (viscosity \times velocity)/length.
${ }^{\mathrm{b}}$ The definitions and uses of these groups are explained in detail in "Weissenberg and Deborah Numbers - Their definition and use", Rheol. Bulletin (The Society of Rheology), 79(2) p. 14 (2010).
${ }^{\mathrm{c}}$ Specific Deborah numbers are often used, depending on the choice of characteristic time. Popular examples are: Deborah number based on Rouse relaxation time ($D e_{\mathrm{R}}$) and Deborah number based on longest relaxation time ($D e_{\mathrm{d}}$).
${ }^{\mathrm{d}}$ The Poisson ratio is also defined as function of Young's and shear modulus ($v=E / 2 G-1$) in three dimensions (and differently in two dimensions).
${ }^{\mathrm{e}}$ The Weissenberg number has sometimes been considered to be N_{1} / σ. However, this is a ratio of dependent rather than independent variables and thus describes data rather than experimental conditions. The quantity N_{1} / σ is often called the stress ratio.
${ }^{\mathrm{f}}$ Specific Weissenberg numbers are often used, depending on the characteristic time. Popular examples are: Weissenberg number based on Rouse relaxation time ($W i_{\mathrm{R}}$) and Weissenberg number based on longest relaxation time $\left(W i_{\mathrm{d}}\right)$.

Table XIII. Frequently used constants

$N_{\mathrm{A}} \quad$ Avogadro's number, 6.023×10^{23} molecules mol^{-1}
$R \quad$ Ideal gas constant, $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$k_{\mathrm{B}} \quad$ Boltzmann's constant, $1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$

