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THE RHEOLOGY LEAFLET 
No. 6 ravra g e l February. 1939 

TENTH ANNUAL MEETING 

The tenth meeting of the Society was held, as announced in the 
November Leaflet, at the Mellon Institute of Industrial Research on 
December 28 and 29, 1938. The papers presented at the technical sess-
ions provided a full program, and provoked much of the discussion 
which is one of the most valuable features of our meetings. While not 
formally planned as such by the Committee, the greater part of the pro-
gram constituted a symposium on the relation of viscosity to the struc-
ture of liquids. The joint session with the Chemical Engineering 
Symposium on Fluid Dynamics was highly successful and served to 
bring the activities of the Society to the attention of a larger group of 
scientists interested in rheology. 

Perhaps as a result of the Christmas season, the attendance at the 
meeting was somewhat below expectations, and we were particularly 
unfortunate in missing some of our members who have been most 
regular in their past attendance. Professor Bingham was recovering 
from a serious illness and was forced to send his greetings by wire. 
Professor Davey was somewhere in the South Pacific, Dr. Traxler was 
in Texas, and Dr. Hunter also was unable to be with us. 

The local committee on arrangements had made excellent plans. 
Dr. E. W. Tillotson, as chairman, and also as official host for the In-
stitute, made everyone feel very much welcome and quite at home. 
All of the guests were given the opportunity of a thorough inspection 
of the research facilities available, from the well equipped machine 
shop and semi-works equipment to the excellent as well as imposing-
library with its exquisite wood carvings and cheerful open fireplace. 
Most of the members took advantage of inspection trips through the 
Research Laboratories of the Aluminum Company of America, con-
ducted by Dr. G. R. Sturm, or through the Westinghouse Laboratories, 
conducted by Dr. A. Nadai. Both of these companies have develop-
ments under way which illustrate interesting applications of the basic 
principles of rheology. 
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THE PROGRAM 

With the exception of the omitted paper by Bingham and Adams 
on "The Fluidity of Electrolytic Solutions" the program was given as 
announced in Leaflet No. 7. Many of the papers gained interest from 
the models exhibited, the personalities of the speakers, and the discus-
sions in which the group participated. Often it was necessary to close 
a lively discussion because of lack of time. 

Molecular models used by M. L. Huggiris to demonstrate the 
effect of kinking made more clear the possibilities of hydrogen bridge 
formation. The free rotation around C-C bonds in the rubber molecule 
was shown by models prepared by F. E. Dart and E. Guth in their 
interesting paper on the thermo-dynamics of stretched rubber. 

Paul S. Roller brought out some of the great differences in the 
determinations of the plasticity of clay from similar work on solutions 
or homogeneous solids. The two-phase system of clay and water pre-
sents unique problems which have been attacked in a more suitable 
manner. 

E. P. Irany presented a plea for more detailed study of the effect 
of inter-molecular forces upon the viscosity of solutions of polymer-
homologous series and suggested methods for such a study. A paper 
which in some ways might be a companion piece was given by Arnold 
Kirkpatrick on the relations between chemical structure and plasticiz-
ing effect. The study of this field has been hindered by lack of appara-
tus for obtaining absolute units of flow. We shall probably find that 
the same laws hold in plastics as in fluids when the proper methods 
and apparatus are devised. For the last several years the program 
committee has attempted to find someone who would open up the 
discussion of plasticizers and we should congratulate Dr. Kirkpatrick 
for his courage in making the attempt. We hope that this will lead 
to more published information along this line. 

The papers by Professors R. H. Ewell, R. B. Dow and Henry 
Eyring inaugurated a very profitable discussion about the fundamental 
nature and mechanisms of flow which we hope will be continued in 
the Rheology Leaflet. 

COMMITTEE ON DEFINITIONS AND NOMENCLATURE 
Although three quarters of an hour had been provided for discus-

sion of the report which was published in the November issue of the 
Rheology Leaflet, program delays reduced the available time to about 
fifteen minutes. Drs. Mayo D. Hersey and A. Nadai spoke in oppo-
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sition to the report as printed and no final action was taken on the 
report as a whole. The group did express their belief that the term 
"viscosity" should not be limited to simple liquids. Aside from the 
formal objection to this generalization of earlier scientific usage, the 
fact is that the word is widely used in industry to describe fluids in 
general and a limitation of its use by members of the Society would 
result in a failure to be understood. Wherever possible scientific 
terminology should be consistent with the vocabulary of the indus-
trialist and technologist. 

It is the hope of the officers of the Society that the entire ques-
tion of definitions and nomenclature can be discussed in some detail 
in the coming numbers of the Leaflet and that at the next annual 
meeting, time may be allowed for a full and conclusive agreement. 

THE RHEOLOGY LEAFLET 
After the Annual Dinner on December 28, those present held an 

informal discussion of publication policy. This was done in order to 
obtain an expression of opinion from as many members as possible 
under conditions more favorable than those normally provided by 
the business meeting. This proved to be a very successful procedure 
and a thorough discussion disclosed a virtual unanimity of opinion 
on the following points: 

1. That our present policy of submitting contributed articles 
particularly those on original research, for publication in the Journal 
of Applied Physics should be continued. 

2. That the Leaflet should be enlarged and improved by the 
inclusion of additional technical material. 

The proposal that was most favorably received was for the in-
clusion of invitation review papers. It was agreed that abstracts and 
bibliographies should be limited to those covering specific topics and 
that we should not attempt any complete coverage of rheological 
literature. Reviews and abstracts will be given of certain books and 
of the more important articles. Discussions of the Definitions Report 
could very well be carried to such a point in the Leaflet that final de-
cisions could be made during the annual meeting. 

The discussion at the dinner meeting included consideration of 
the size of the membership in relation to publication of the Leaflet 
The present membership is too small to support the Leaflet and its 
publication is in part paid for by reserves accumulated in previous 
years. It is essential that a substantial increase in membership be 
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obtained in the next two years if the Leaflet is to be continued. It was 
therefore agreed at the meeting that all members should aid the officers 
in distributing complimentary copies of the Leaflet in an effort to 
increase the membership. 

With this objective in mind, the editors have solicited papers 
which, we believe, will be of wide appeal to the several branches of 
rheology. It seems particularly fitting that for our first contribution 
Dr. Melvin Mooney, President of the Society, has consented to present 
a paper on the fundamental concepts of shear. This paper should be 
of great value to anyone concerned with deformation problems who 
is not familiar with the formal mathematical analysis of such prob-
lems, as it provides a summary of the fundamentals of this analysis in 
a relatively simple geometrical presentation. 

STRESS AND RATE O F STRAIN 
AN ELEMENTARY ANALYSIS 

1. Introduction 
When is the rate of shear not equal to the velocity gradient? 

What is the relationship between stress and rate of strain in three-
dimensional, viscous deformation ? 

There are doubtless many practical rheologists whose knowledge 
of the theory of deformation of continuous media is adequate for most 
purposes, but not adequate to answer the above questions. The rea-
son is that the texts which cover such questions completely and accu-
rately are all highly mathematical in their presentation of the subject. 
However, a fairly complete analysis of homogeneous stress and strain 
can be made by means of simple geometrical diagrams and a little 
elementary algebra. Such an analysis will be presented in the present 
discussion. 

The customary approach to the general problem of stresses due 
to viscosity is to assume the simplest possible relationship, that is, 
stresses proportional to corresponding rates of strain. Then it is shown 
that, for isotropic material, a certain proportionality factor introduced 
in the general, three-dimensional problem, can be identified as the 
coefficient of viscosity. This identification is made by applying the 
general formula to a two-dimensional simple shear. The method is 
powerful and entirely rigorous. Never the less it leaves the average 
rheologist completely mystified as to why, for example, the viscous 
tensional stress associated with a given rate of elongation, vx , should 
have the value 2n\* . In the present discussion we shall start with 
the concept of viscosity in simple, two-dimensional shear; and we 

4. 



shall build up from that to the most general type of three-dimensional 
deformation. 

Since the applications we have in mind are only to continuous 
viscous or plastic deformations not involving any elastic forces, we 
may limit the discussion to infinitessimal strains. Rates of strains, on 
the other hand, are considered finite. 

2. Two-dimensional Strain 
We consider a two-dimensional strain in the XY-plane. Suppose 

that the square section of the material, OABC of Figure 1, is trans-
formed into the rhombus O'AjB'Ciof Figure 2, the sides of the rhom-
bus being equal in length to the sides of the original square. For con-
venience we take this length as unity. If our reference axes have 
moved and rotated with the material, if necessary, in such a way that 
the X-axis remains coincident with the side OA, the axes take the 
positions O 'Xi and O 'Yi . The deformation with respect to these 
axes is described as a simple shear parallel to the X-axis. The amount 



of shear is the ratio Q. C 2 / 0 ' C g , or, in the case of an infinitessimal 
shear, it is a , the angle of shear, expressed in radians. 

Now suppose that our reference axes had moved and rotated dur-
ing the deformation in such a way that the Y-axis remained coincident 
with the side OC. The axes would take the positions 0 ' X 2 and 0 ' Y 2 ; 
and the deformation would then be described as a simple shear parallel 
to the Y-axis. The amount of shear would still be the same, quanti-
tatively, but would be measured by the ratio A 1 A 2 / 0 ' A 2 , or again 
the angle a . 

We see therefore that the same shearing deformation can be 
equally well described as a simple shear parallel to the X-axis or parallel 
to the Y-axis. Furthermore, the shear parallel to the X-axis requires 
that there be an equal shear parallel to the Y-axis; and each of these 
two descriptions emphasizes only one of two aspects of the deforma-
tion, both of which are essential features of it. We may therefore 
appropriately refer to the deformation as an XY-shear. It is to be 
noted that this terminology implies not only that the shearing deforma-
tion takes place in the XY-plane, but also that the lines in the material 
parallel to the X- and Y-axes do not change in length during the defor-
mation, and that the amount of shearing displacement parallel to these 
two axes is greater than for axes of any other orientation in the plane. 
We indicate all of this by saying that the X- and Y-axes are the axes 
of the shear. 

If we wish to think of the deformation without reference to any 
arbitrarily chosen set of axes, we have merely to note that the essential 
change is a change in the angles between the sides of the original 
square. The amount of shear may thus be defined as the angle through 
which the side O C rotates with respect to the side OA.* The shear 
is considered positive if the two lines rotate towards each other. 

With respect to the axes Xi Yi the material above the X i -axis 
moves to the right, while that below moves to the left; and there is 
no vertical movement. Hence there is a net or average clock-wise 
rotation of the material. Similarly, with respect to the X2 Y2 axes there 
is a net counter-clockwise rotation. 

Now let us consider again the same deformation, but with 
respect to the axes X3Y3, as shown in Figures 3 and 4. In this case 
the reference axes, while remaining orthogonal, can still pass through 
the vertices of the deformed figure; and there is no shearing movement 
parallel to the axes X3Y3 . The deformation consists of a uniform 
expansion in the X3-direction" and an equal uniform contraction in 

•For a f ini te shear the amount o£ shear can be defined as the angle of rotat ion with 
respect to O X r Figure 2, or a circle of radius OC, with center a t 0 \ and the circumfer-
ence moving with mater ial a t the point C2 b i r m n u w 
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the -direction. It is easy to see that this is true if we think of the 
side Q1R1 as moving to the position Q 2 R2 in two steps. If first the 
point Q x remains fixed and the point R i moves to R2, the movement 
of any point on th eline is in the Y3 -direction by an amount propor-
tional to the Y3 -coordinate of the point. In other words, it is a uni-
form expansion parallel to the Y3-axis. Similarly, if % now remains 
fixed and point Q x moves to point Qg, the additional movement is a 
uniform X3 contraction. There is shearing, of course, with respect to 
the bisectors of the angles formed by the reference axes. 

The rotation of the material with respect to one of these bisectors 
is exactly balanced by an opposite rotation with respect to the other 
bisector. The net rotation with respect to either the bisectors or the 
X3Y3-axes is therefore zero. For this reason the deformation with 
respect to X3Y3 is described as a pure shear. If a shear is described 
as either simple or pure, with no mention of the reference axes, it is 
generally to be understood that the axes considered have a constant 
orientation in space. With this understanding, the shear in a capillary 
viscometer is a simple shear. A two-dimensional pure shear is seldom 
obtained in experiment. 

3. Elongation-Shear Relationship 
Let us determine the amount of shear in Figure 2 in terms of the 

elongation and contraction in Figure 4. To do so, we compare in 
Figure 2 the diagonal O ' B i of the square, (not drawn in the Figure) 
with the diagonal O'B' of the rhombus. Figure 5 shows the upper 
termini of these diagonals. For an infinitessimal deformation the two 
diagonals are parallel; and ey, the elongation in the Y3-direction in 
Figure 4, is measured in Figure 5 by the length DB', or more specifi-
cally, by the ratio D B ' / O ' B ^ 

FIG. 5 
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The length of a side of the square or rhombus has been taken 
as unity. Then the following relationships are obvious: 

(1) o ^ « y r , 

(2) B]B' » a , 

(3) DB» - BjBVv7^ - a /72. , 

(4) e y - DB'/OB-^ = a / 2 . 

In like manner it is easily shown that the X 3 -elongation is 

(5) e x « - a / 2 . 

We thus see, incidentally, that 

(6) e x + e y = 0 . 
If our original section of material is a unit cube, it is obvious that 

e* is the increase in volume due to the elongation in the i-direction. 
Therefore equation (6) states the fact that the total volume change^ 
or dilitation, is zero. 

If the original section of material chosen in Figure 1 had been a 
circle instead of a square, the deformed section in Figures 2 and 4 
would be an ellipsee, with its axes parallel to the -axes. It would 
be called the strain ellipse, and its axes the strain axes. The relations 
of Figures 2 and 4 tell us that in an infinitessimal shear the two di-
ameters of the strain ellipse which retain their original length are 
orthogonal and at 45° with respect to the strain axes. With any other 
orientation of the reference axes the deformation would not appear as 
a shear only or as an elongation-contraction only, but as a combination 
of both types of strain. 

We shall need later the relation between shear and the elonga-
tions when there is dilatation in the plane of shear. Suppose then that 
in Figures 2 and 4 there is added a small elongation e_, equal in all 
directions in the plane. The new total elongations are then 

E x = e x — Cb. 

(7) 

Since a uniform dilatation does not change angles the angle ° 
and hence the shear remain unaltered. Then, from equations (4) 
(5) and (7) , we find 

(8J a = E y — Ex. 
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4. Rate of Shear 
If the shear a , progressing at a constant rate, occurs in the 

time t, the rate of shear is a / t . We may say therefore that the unit 
of rate of shear is radians per sec. It is more customary to state this 
unit as cm per sec per cm. However, the former definition seems to 
be preferable in that it is more directly related to that essential feature 
of the deformation, the relative rotation of two particular lines in the 
material, and is not dependent upon the choice and proper movement 
of any reference axes. Hence in this discussion we shall denote rate 
of shear by to, connoting angular velocity. 

In this connection we point out that the rate of shear is not, in 
general, equal to the velocity gradient with respect to stationary axes, 
or axes of arbitrary orientation or rate of rotation. The Couette, or 
rotating cylinder, viscometer is an illustration of this point. We may 
state the following two equivalent correct definitions, applicable to a 
two-dimensional deformation of zero dilatation: 

1. The rate of shear is the instantaneous velocity gradient 
normal to an axis which is and remains parallel to a line momentarily 
of constant length. 

2. The rate of shear is the instantaneous relative angular 
velocity of two lines which are momentarily orthogonal and of con-
stant length. 

5. Two-dimensional Stress 
-Corresponding to the shearing deformations which we have been 

discussing, there is a stress system, proportional to the rate of shear, 
which we now wish to consider. In Figure 6 the vectors o represent 

Y 

FIG. 6 
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the tangential stresses, or tractions,* which correspond to the shear 
and act on the four faces of the cube which are parallel to the Z-axis. 
Since the rates of shear parallel to the X i -axis and the Y2 -axis are 
equal, as we have seen, the four tractions must be equal. Equality of 
these four tractions follows also from considerations of mechanical 
equilibrium, regardless of the origin of the stresses; but we can 
dispense with the additional proof. 

We raise the question, What are the stresses operating an the 
planes through the diagonals OB and AC and parallel to the Z-
axis? The answer is easily obtained by resolving the stresses j in 
the two directions parallel to the diagonals. We see that there is a 
tension,tx , across the face and negative tension or compression, t 3 

across the face OB. The magnitude of the tension t x is given by the 
following series of equations. Assuming a unit cube, 

(9) % - l f x * f i/Ac - — / v-2 - a . 

Similarly, 
(10) T 2 = - a . 

If there is a uniform tension or negative pressure,f0 , in addition 
to the stresses already considered, we then have 

( 1 1 ) . 
T 2 11 t 2 * , 

( 1 2 ) C * ( T x - T 2 ) / 2 . 

6. Stress-Rate of Strain Relationship«—Two Dimensions 
By the definition of the coefficient of viscosity, yi, we have the 

relationship between traction,a, and rate of strain, co , 

(13) or • Tlu . 

We wish to derive also the formula for W, the rate of working 
per unit volume, or conversion of mechanical energy into heat Con-
sidering the deformation with respect to the XiYi-axes, for example 
in Figure 2, this rate per unit volume is the rate of work being done on 
the face C i B ' of the unit cube. This is given by the product of the 
shearing stress, cr, into the velocityw , or 

(14) W » T) to2 . 

The tractions operating on the other three faces do not add anv-
t h m g t o j h i s work. This is because face 0 'A X is stationary; and the 
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faces O ' C i and AXB' only rotate about the Z-lines through O ' and ^ , 
respectively, and hence have no component velocity in the direction 
of the tractions operating on those faces. 

7. Stress-Rate of Strain Relationships—Three Dimensions 
Just as any two-dimensional homogeneous deformation trans-

forms a circle into an ellipse, so any three-dimensional homogeneous 
deformation transforms a sphere into an ellipsoid. The axes of the 
ellipsoid are called the strain axes, and the elongations along the strain 
axes are called the principal elongations. 

If the deformation is initially described with reference to coordi-
nate axes which are not parallel to the strain axes, the deformation 
involves, in general, both shears and elongations. The problem of 
determining the principal elongations and the orientation of the strain 
axes with respect to the reference axes in such a case is not a simple 
problem and will not be treated here. We can, however, analyze the 
stress-rate of strain relationships and determine the stresses acting on 
planes normal to the reference axes, regardless of whether or not the 
reference axes are parallel to the strain axes. 

A. Shears Only. 
Let us assume three shears with shear axes parallel to three 

orthogonal coordinate axes. It is obvious that these three shears and 
their corresponding three sets of shearing stresses can all exist simul-
taneously without effect upon each other. The tractions are given 
by three equations similar to (13), 

(15) CTyz = T) 0)yz , 

and the total rate of working by 

(16) w - n - u2
Z J C * o ^ j # 

B. Elongations Only. 
Let the ra tes of e longat ion be Let the vo lume be con-

s tan t . I hen by the a r g u m e n t g iven in connec t ion with equa t ion ( 6 ) , 

(17) vx • v y + v z = o . 
We shall make use of the fact that these elongations are equiva-

lent to two shears, one in the XY-plane and the other in the YZ-plane 
Starting with the material at rest, we impose a shear in the XY-plane 
with shear axes at 45° on either side of the X-axis. Let the rate 
of shear be 2vx , so that the rate of elongation in the X-direct'ion is vx 

and in the Y-d.rection is . By equation (13) the corresponding 
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( 1 8 ) - T i W z = 2 n v x . 

We now propose to add a shear in the YZ-pIane with axes lying 
at 45° on either side of the Z-axis. Before doing so we note that the 
shear already proceeding in the XY-plane involves a certain amount 
of shearing and dilatation in the YZ-plane. Although there is no move-
ment parallel to the Z-axis, there is an elongation -vx along the Y-axis; 
and this means a uniform dilatation -vac/2 in the YZ-plane, plus Y-and 
Z-elongations - v x ' 2 and v x /2 , respectively. By analogy with equa-
tion (8), the rate of shear is v x . 

We now add the new shear, w x , with the same axes. Then the 
new shear is added algebraically to the YZ-shear already present; and 
the corresponding additional stress system is added algebraically to 
the first one. Let the added rate of shear be 2v z , so that the rate of 
elongation in the Z-direction is v z and the added rate of elongation in 
the Y-direction is -v z . The corresponding added traction is 

( 1 9 ) crx « r\ o>x « 2 T) v z . 

The two shears ^ z and o>x which we have now imposed on the 
system produce a total rate of elongation in the Y-direction of -vx -vfe . 
But by the equation (17) this is vy. Hence all three rates of principal 
elongations now have their required values; and the two shears w z 

and g>x together are equivalent to the three elongations v x , v y , v z . 

The tensions along the coordinate axes arising from these shears 
are, after equation (9) , 

T x - 2 T1 V x , 

(20) T Y = - 2 T1 (v x + V z ) » 2 T1 Vy , 

T 2 = 2 T! V z . 

The rate of energy dissipation is 

(21) * - x x v x + T y v y + v z . 

Substituting fo r t* , etc from (20) and applying (17), we obtain 

(22) tf . 2T, ( y | * V 2 + v * , . 

C. Combined Shears and Elongations 
If the deformations treated in the two previous sections proceed 

simultaneously, the displacements are added vectorially as are like-
wise the stresses. Thus the resultant stress on a plane normal to the 
X-axis has the X, Y, Z,-components, 

t x " Z ti vx , 
(23) 0 ^ = 7 1 o i y , 

czx " ^ wzx • 
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The displacement of a surface normal to an axis, resulting from 
one of the deformations, has no component in the direction of the 
stress on that surface resulting from the other deformation. Hence 
the rates of working resulting from the two deformations are mutually 
independent and are algebraically additive. Thus, 

If there is an added uniform tension or negative pressure, TQ, SO 
that the total tensions are 

(25) T X » T X •»• T q , e t c . , 

then instead of (23) we have 
* 2 n v x , 

( 2 6 ) CTXy = • n t O x y . 

°zx = "n » e t c . 

From equations (20) and (17) it is obvious that 

( 2 7 ) x x * x y * T z » o . 

Then by adding together the three equations of type (25) we 
see that ' 

( 2 8 ) T 0 = i ( T x + T y + T z ) . 

That is, TQ is the mean tension. 

We can illustrate the use of equations (26) and (28) by consider-
ing the measurement of viscosity by the method of stretching a glass 
thread under constant tension. L e t ^ be the tension, applied in the 
Z-direction. If the atmospheric pressure is p, then 

( 2 9 ) 

(30) 

(31) 

Substitution of (29), (30.1) and (31) into (26.1) yields 
( 52) 

r\ - T 3 / 3 v z 

T 0 « - p • T 3 / 3 , 

T x = - p 
3 - p • 
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8. Some Theorems Concerning Three-Dimensional Deformations 

Suppose we have two shears, a and £ with one common axis, 
OY, as shown in Figure 7. Then the resultant displacement of any 
point at the height y above the VX-plane is given by the vector sum 
y (ai ), where i and j are unit vectors in the directions of 
the two shear axes OX and OV, respectively. The deformation is 
obviously a single shear in the YW-plane. Hence we have 

Theorem I. Any two shears having one shear axis in common 
are equivalent to a single shear with one axis the same as the common 
axis. The other axis and the value of the resultant shear are determined 
by the vector sum of the two displacements equal respectively to the 
two original shears and directed parallel to their two axes which are 
not common. 

It has been stated that any homogeneous strain is equivalent to 
three elongations along properly oriented orthogonal axes. As a rule 
problems in elasticity and plasticity are discussed with reference to 
these principal elongations. However, a rheologist who happens to 
deal mostly with liquids and the problems of viscous flow may have 
difficulty in thinking in terms of elongations. It is natural to inquire 
whether a homogeneous strain in general is equivalent to three shears 
with properly oriented orthogonal shear axes. 

In order to answer this question let us consider a sphere which 
we deform infinitessimally at constant volume into an ellipsoid. The 
sum of the principal extensions must be zero, or 
(33) 

e x •*• e y + e z a o . 
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Now let us assume the surface of the ellipsoid and that of the 
original sphere superposed with their centers coinciding. Since by 
equation (33) all three elongations cannot have the same sign, the 
two surfaces will cross along certain lines, which we shall call the 
neutral lines. There are two such lines, each forming a complete loop 
around that axis along which the elongation is opposite in sign to the 
other two elongations. The loops are symmetrically situated on oppo-
site sides of the sphere. 

A radius of the sphere to any point in either of the neutral lines 
remains of constant length during the deformation. Let such a radius 
determine a new X'-axis. Then 
(34) e x . „ o . 

Now we pass a plane through the center of the sphere and normal 
to the X'-axis. This plane cuts the ellipsoid in an ellipse having its 
center at the common center of the sphere and ellipsoid. Let any two 
orthogonal radii of the ellipse be drawn, and denote the corresponding 
elongations by e^ and e^. 

If we imagine a unit cube with its faces normal to these three 
radii, or axes, we see that the total dilatation associated with the cor-
responding elongations is the sum of the elongations. The cube is sub-
jected also to shears parallel to its faces; but we have seen in Section 
3 that there is no dilatation resulting from shears. Hence, since the 
dilatation is zero, we must have 

( 3 5 ) e x , «• e y t + e z , - o . 

Then by equation (34), 
(36) 

e y t + e 2 , = 0 . 

Therefore there is no dilatation in the plane of the ellipse This 
being the case, there are two orthogonal radii of the ellipse which 
retain their length during the deformation. They are therefore radii 
of the original sphere and intersect the surface of the sphere at two 
other points on the neutral lines. 

We have thus found three mutually orthogonal radii of the sphere 
which remain of constant length during the deformation The de-
formation with respect to these three radii as reference axes can only 
be three shears. Since the first radius was drawn to any point on 
the neutral line, there is an infinite number of such sets of orthogonal 
axes which resolve the deformation into shears without elongations 
along the axes. We thus have the 
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Theorem II. Any homogeneous infinitessimal deformation of 
zero dilatation is equivalent to three shears with respect to three ortho-
gonal axes, properly oriented with respect to the strain axes of the 
deformation. 

If the X'-axis is directed through a certain point, some interesting 
simplifications result. Suppose that e z is of one sign and e^ and ey of 
the opposite sign. Then the neutral lines are loops around the Z-axis. 
Let the X'-axis be directed through the point where the neutral line 
intersects the YZ-plane in the quadrant -Y and +Z, as shown in Figure 
8. The Y'-and Z'-axes are symmetrically directed in the two octants 
•X , *Y, +Z and -X, +Y, +Z. The X', Y\ Z'-axes thus enclose the 
Z-axis. 

The precise directions of the new axes with respect to the strain 
axes, and the shears in the planes of the new axes, can be expressed in 
terms of the principal elongations. The calculations involve only 
algebra, but they are too lengthy for presentation here. The results 
are as follows: 

Direction Cosines With Respect to the Strain Axes 
X' 
o 

m 

Y^r y ^ « z - v ^ v v 
The shears are 

a y » z . - V-2 e y e z 

a z * x ' » V-2 Qy e z 

^ ' y ' - - 2 e x . 
As could be shown entirely from symmetry considerations, we 

see that a y V = Hence if these two shears are combined in ac-
cordance with Theorem I, the resultant shear,a will have one axis 
collinear with the X'-axis and the other axis lying in the Y'Z'-plane 
and bisecting the angle between the* Y' and +Z' axes. The value of 
the shear is v a$» z »+ a§»x»or 

c x , - 2 -¡/—Qy e 2 . 

In view of the fact that any deformation can be expressed as 
three elongations along properly oriented orthogonal axes, we have 
now established 
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Theorem III. Any infinitessimal deformation of zero dilatation 
is equivalent to two shears lying in two orthogonal planes, one shear 
having one axis at 90° and the other at 45° with respect to the axes of 
the other shear. 

Experimental measurements of viscosity in three-dimensional 
shear would be of great interest, especially as applied to thixotropic 
materials or to colloidal solutions which exhibit streaming anisotropy. 
In the latter case, at least, we could anticipate a different viscosity in 
different planes of shear. However, it seems inherently impossible to 
devise an apparatus for maintaining continuously a three-dimensional 
shear that is homogeneous throughout any large fraction of the mate-
rial under test. Apparently, then, any possible experiment will in-
volve the difficulties of integrating some very complex field equations 
with a set of complex boundary conditions. 

Figure 8 

The case illustrated is with the principle elongations 

e x = 5 

®y - 26 l 5 | « 1 
- a s 

ADCX' is a neutral line, or line of intersection of the original 
spherical surface with that of the ellipsoid produced by the strain. The 
other neutral line is the mirror image in the XY-plane of the one shown. 
Regardless of the ratios of the elongations, the neutral lines always 
pass through the normals to the sides of the regular tetrahedron deter-
mined by the XYZ-axes. Four of these points are shown at E, E \ F 

and F \ The line ABC, a section of an ellipse, is the projection of the 
neutral line in the ZX-plane. 

X' is the intersection of the neutral line with the YZ-plane. Y' 
and Z' are mirror images of each other in the YZ-plane and form with X' 
an orthogonal system of axes. With respect to these axes the defor-
mation consists of shears only. The X'Y' and Z'X' shears are equal. 

A similar symmetrical solution would be obtained if one of the 
new axes were passed through any of the points A, D, or C. 
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FIG. 8 

G. W. Scott Blair, An Introduction to Industrial Rheology. 

(Blakiston, Philadelphia, 1938) 143 pp. 

The volume does not pretend to be a textbook on a definitely 
outlined field of science but rather, a loose collection of treatises on 
a science in the making. The author attempts a systematic review of 
what has been done in the field which, in due course, will be consoli-
dated into a science of industrial rheology. 

In order to appreciate the difficulty of the task, one must consider 
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the relative immature state of rheology as an exact science—the con-
troversial nature of its most fundamental conceptions, the confusing 
growth of terms and definitions, the frequently meaningless empiric-
ism of mathematical expression, the mass of minutiae waiting for 
significant correlation and generalization. 

An introduction to industrial rheology should be suggestive of a 
mission of this science; it should not only gather the widely scattered 
material but organize, digest, discriminate. It may be questioned 
whether in this sense, the author has offered more than an uncritical 
review. Much of the material dealt with at great length is too insig-
nificant and confusing to encumber an introduction to a new science; 
in particular, too much prominence is given to rather meaningless alge-
braic formulations which do not present rheology in its best light to 
those who, for some practical reasons, desire an introduction to it. 

The author, who has notably contributed to the present stock of 
knowledge, has well enough succeeded in presenting—if not precisely 
an introduction to industrial rheology in bold outline—a good survey 
of its fragmentary material. The presentation of fundamentals is brief 
concise, and up-to-date. Considering the lack of general summaries 
in this field, the book should be interesting to the novice as well as the 
initiated—if, indeed, anyone may find himself altogether ignorant of 
or all-inclusively expert on so wide and ramified a subject A fore' 
word by Professor E. Bingham and a glossary of rheological terms add 
to the value of the volume which closes with the plea that physicists 
chemists, engineers and technicians in all branches of industry join 
forces as rheologists, conscious of a common task E P Irany 
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