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THE RHEOLOGY LEAFLET

No. IO TOVTO Q€L August. 1939

PROGRAM

ELEVENTH ANNUAL MEETING
NATIONAL BUEREAU OF STANDARDS
OCTOBER 13-14, 1939

SOCIETY HEADQUARTERS:
Wardman Park Hotel
Connecticut Ave. and Woodley Road, N. W., Washington, D. C.
Rates $3.00 single; $5.00 double,
The hotel will arrange sightseeing tours for the families of
members,

The Society is deeply in debt to the local committee on Arrange-
ments. Chairman J. W. Burney is being assisted by W. H. Herschel,
A. T. McPherson and Paul S. Roller.

Ten years ago the Society held a very successful meeting at the
Bureau. During these intervening years the Bureau has been the cen-
ter of a large amount of work along rheological lines. The committee
has made it possible f orour members to gain an intimate view of these
activities which should be both interesting and of considerable prac-
tical value.

The Program Committee consisting of R. H. Ewell, chairman,
E. C. Bingham, J. H. Dillon, P. D. Foote, W. H. Herschel, A. Nadai,
E. W. Tillotson and R. N. Traxler, has cooperated with the local com-
mittee and has arranged a short but important series of papers for the
Saturday morning session.

October 13th

9:00-9:45 A. M. Registration. East Building. National Bureau
Bureau of Standards.
The registration desk will endeavor to
function as an agency for making contacts be-
tween visitors and Washington scientists.

10:00 A. M. Symposium on Rheology in Science and In-
dustry. Lecture Hall. East Building.
Greeting: Welcome by Dr. Lyman J. Briggs,
Director of the National Bureau of Standards.
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. Introductory Remarks. A. S. Hunter. E. L.

du Pont de Nemours and Co.
Rubber. J. H. Dillon. Firestone Tire and
Rubber Co.

. Paint and Varnish. G. G. Sward. Institute

of Paint and Varnish Research.
Glass. G. W. Morey. Geophysical Labora-
tory.

. Geophysics. L. H. Adams, Director, Geo-

physical Laboratory.

Soil Mechanics. C. A. Hogentogler. Bureau
of Public Roads.

Clay Products and Masonry Mortar. J. W.
McBurney, National Bureau of Standards.

. Plastics and Organic Fibres. W. E. Emley.

Natonal Bureau of Standards.

Dental Materials. Wilmer Souder. National
Bureau of Standards.

Concrete. W. H. Herschel. National Bureau
of Standards.

Medicine and Biology. Dr. F. S. Brackett.
National Institute of Health.

Metals. A. Nadai. Westinghouse Electric
and Manufacturing Co.

1:00 P. M. Luncheon at the Cafeteria. Industrial Building.

75 cents.

2:00 P. M. Inspection trips starting from in front of the

Industrial Building.

There are a number of investigations of rheological interest in
progress at the Bureau of Standards and elsewhere in Washington
which are not represented in the Symposium. Arrangements have
been made for consideration of these topics in connection with the in-
spection trips. Among such items are work on the absolute viscosity
of water, an investigation of high pressure lubrication, viscosity of oil
and various aerodynamic studies. Although a general tour of the
Bureau has been arranged, members of the Society and guests can
spend the afternoon in the section or laboratory in which they are par-

ticularly interested.

The following inspections trips have been provided:
1. National Bureau of Standards.
2. Geophysical Laboratory of the Carnegie Institute.
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3. Laboratories of the Bureau of Public Roads.
4. Institute of Paint and Varnish Research.
5. Technical Laboratory of the Federal Bureau of Investiga-
tion.
Arrangements can be made for small groups to visit any of a
number of other governmental and private laboratories in Washington
and vicinity.,

October 14th
9:30 A. M. Lecture Hall. East Building.
Report of the Committee on Definitions and Nomenclature.

10:30 A. M. M. Mooney. U. S. Rubber Co., Passaic, N. J. “A
Three-Dimensional Model to demonstrate the re-
lationship between Principal Strains and Simple
Shears.”

10:40 A. M. Raymond B. Block. Wright Field, Dayton, Ohio.
Note on the use of The Rolling-Ball Viscometer
for Measuring the Effect of Pressure upon the
Viscosity of Liquids.”

11:00 A. M. R. B. Dow. The Pennsylvania State College,
State College, Pa. “Computation of some
Physical Properties of Lubricating Oils at High
Pressures.”

11:30 A. M. E. C. Bingham, Lafayette College, Easton, Pa.
“Neglected Fields of Rheology.” This paper will
cover reaction velocities, the role of rheology in
the bodies of animals and plants in sickness and
health, the physical property of hardness from a
rheological point of view and the rheological im-
portance of “film.”

12:00 G. W. Scott Blair and F. M. V. Coppen. National
Institute for Research in Dairying. University of
Reading, Reading, England. ‘“Psycho-Rheology.”

1:00 P. M. Luncheon. Wardman Park Hotel, price $1.00.

2:00 P. M. Business Meeting. Wardman Park Hotel. Members
interested in the future of the society should
arrange their plans so that they may attend this
meeting.



At the Tenth Annual Meeting held December 28 and 29th in
Pittsburgh, two papers were presented which seem to deserve further
consideration and are therefore printed in this issue. In the absence of
Professor Gemant his paper was read by H. R. Lillie. It represents an
able attempt at analysis of a very complex and controversial subject
and it is presented in the hope that it will stimulate further research
on the electrical properties of plastics.

The paper of M. Reiner and K. Weisenberg was received after the
meeting was over and is given at this time so that it may be discussed
at the coming meeting.

THE ELECTRICAL CONDUCTIVITY OF PLASTIC DIELECTRICS
By Andrew Gemant
Department of Electrical Engineering, University of Wisconsin,
Madison, Wisconsin

The author’s theory on solid friction is here applied to ions in a
plastic dielectric, and it is shown how the experimentally observed
behavior of the electrical conductivity under varying field strength on
the one hand, and under varying frequency of the impressed voltage
on the other can be explained on the above basis.

* * -

In liquids, ionic mobility is controlled by the viscosity of the
medium, and the viscosity of the medium with respect to motion of
the ions is that obtained from large scale measurements. There is
no doubt that this rule is valid for liquids of very high viscosity as well.
In dealing with elasto-viscous liquids, however, the rule is likely
to fail, its failure becoming quite evident, if plastic solids are being
considered. Two alterations have to be introduced into the original
rule valid for liquids. First, there is no apriori justification to suppose
that the viscosity the ions have to overcome should have the same
numerical value as that cobtained from large scale measurements.
Second, it is certain that the elastic properties of the solid will have to
be taken into consideration, just as for any other deformation of the
plastic. The first alteration mentioned is certainly important, but un-
fortunately scarcely anything definite is known on this point. This
paper will therefore be concerned chiefly with the second alteration
proposed.

The author has published some work on the rotation of dipolar
molecules (1)in vitreous solids, and has mentioned in those papers
that it is possible to extend those ideas to the motion of ions as well.
The fundamental conception is that generally used in connection with
deformation of plastics,(2) namely, that each deformation is a super-

1) A. Gemant: Jour. Appl. Phys, 9, 730, 1938.
2) J. M. Burgers: First Report on Viscosity a. Plasticity, Amsterdam, 1935.
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position of an elastic displacement and a viscous flow. The displace
ment may be different for both of these components and will depend
upon special experimental conditions, but since the stress for both the
elastic displacement and the viscous flow is the same, they can be
considered to be mechanically connected in series. The assumed elastic
displacement is not ideal, but is coupled with a loss mechanism, known
as solid friction. Being an integral part of the elastic displacement,
as known from experiments on mechanical vibrations below the yield
point, the solid friction must be considered as connected mechanically
parallel to the elastic element.

The next step is to specify these three fundamental units of re-
sistance, assumed to oppose the motion of ions, in accordance with
existing data.

It has just been stated that no experimental method for deter-
mination of the viscous component exists up to now. The electrical
conductivity of the material in question, determined by means of d.c.
and at low field strength, allows the ratio of the ionic concentration
to the viscosity to be computed. In other words each value assumed
for the viscosity will fix the value of the concentration of ions as well.
We then have to choose a coupled pair of these values such that both
should appear as much in accord with experimental evidence as pos-
sible. In this way we can estimate in a two-fold manner the viscosity,
thus restricting the plausible range considerably. How this has to
be carried out will be shown below.

As to the elastic component, we assume an elastic modulus for
the surroundings of the ion, equal to that known from large scale
eexperiments, although again it is possible that the true value differs
somewhat from the assumed one. The solid friction component also
can be estimated from numerical (3)data available on several vitreous
materials with ionic conductivity, (glass, ebonite, polystyrene, etc.).
The most striking feature of these data is that the frictional term, ex-
pressed as logarithmic decrement of vibrations, or as specific loss per
cycle, is fairly independent of the frequency from the lowest up to
around 10° cycles per second. We can therefore hardly speak of a
dissipative term, like the viscous resistance, but rather of a resistance
the value of which varies inversely with the impressed frequency.

The final equations depend on whether the impressed voltage
is direct or alternating. The details of the above are being published
elsewhere. The purpose of the present paper is to give some numer-
ical computations based on our equations, and to compare the result
with some experimental data of the literature. Let us first consider
the case of a d.c. voltage. The application of our combined resistance

3) A. L. Kimball: Vibration Prevention in Engineering, New York 1932, p. 133.
A. Gemant a. W. Jockson: Phil. Mag. 23, 960, 1937.
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shows that for small field strengths the viscous component comes into
action. The elastic displacements of the ion are, however, even for
the highest fields applicable, small as compared with the viscous ones.
In consequence of this the solid friction element will have practically
no importance in this connection. The increase of the ionic mobility,
due to elastic shifts, also appears to be negligibly small. However, a
rather plausible assumption seems to be that the amounts of Kinetic
energy collected by the ion during its transitions from elastic to viscous
displacements will, to a certain extent at least, accumulate as vibra-
tory energy. The ionization number @ , number of successful im-
pacts during a path of 1 ¢cm., can be shown to be:

ok e
i Li}x}\z (1)

where e is the charge of a monovalent ion, E, applied electric field, L1
the ionization energy, 1 the shear modulus of elasticity, and A the
molecular diameter with a numerical factor left open. Egq. 1 gives
maximum figures, the true ones are probably smaller. For numerical

calculations let us assume a material with the following constants, in

absolute units: Ly = 3 (corresponding to an ionization

potential of 6 volts), p = 1010, XA =7 x 10-8
cm. Then if E is in absolute units,

a =5 x 104 g (2)

The current-voltage characteristic of this material should now be cal-
culated.

If two electrodes of 1 cm?® .surface are placed at a distance of @
cm., and the original concentration of the ions is n, then, in case in-
ternal ionization occurs, the final concentration ng becomes, (4) for
aa > 1

n
g log 2aa

{1 (3)

and the ratio of conductivities ¢ for a field E and for small fields:

b G e (4)
Tl IR
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: -3 ‘
Assuming Go= 2.5 x 10 ~ (about 3 x 10 Y ihos per cm.) we have
for the current density at field E:

-3
, - 35 :alo E 08, 5)

and, substituting Eq. 2, with.a = 0,05 cm.,
il li‘-‘-’- (22.5 x 1072 BR-1) 6)

Evaluating Eq. 6 up to 150 kV/cm., Fig. 1 is obtained.

The literature contains quite a number of such current-voltage
characteristics, showing a similar behavior to Figure 1. We quote
here as an example data of W. Scislowski on paraffin wax, (5)and those
of S. Whitehead on cellulose acetate and varnish paper board, (6)solids
with finite plasticity.

Table 1 contains our figures together with those calculated from
curves given by the two authors just quoted; it can be seen that our
assumed data lie between those referring to paraffin wax, a high grade
insulator, and paper board, a rather poor one.

Table 1.
Current density dependent on field strength

Data on varnish
Data on paraffin wax paper boarq after Data calcualted
- after Scislowski S. Whitehead from Eq. (6).

Kv/em  10-12 Amp. Kv/cm 10-% amp. Kv/em 10-9 Amp.

25 0.0005 60 343 35 0.1

50 0.0035 120 75 70 0.32

75 0.014 180 i 105 0.97
100 0.04 240 40. 140 2.8

The essential features of the behavior of the conductivity are as
follows. Deviation from Ohm’s Law generally starts between 20 and
100 kV/cm., according to the thickness of the sample, the initial field
strength increasing with decreasing thickness. Near the initial field
strength our Eq. 4, in conjunction with Eq. 2, indicates that the con-
ductivity follows an equation of the kind:

OE‘O'°+BEZ+ )'EA

4) N. Semenoff and A. Walther: Westigkeitslehre, Berlin, 1928 page 150.
5) W. Scislowski: Acta Phys. Polonica, 4, 123, 1935.
6) S. Whitehead: World Power, 26, 72, 1936,
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in which B and Y are constants, as found by L. Hartshorn for var-
nished cloth. (7) For higher fields the increase of current is of an
exponential nature. For fields between 200 and 1000 kV/cm. (again
increasing with decreasing thickness) the current density becomes
the order of several microamperes, and instability generally follows.

We now turn to the effect on ionic conducitvity of the frequency
of the impressed voltage. For a.c. voltages the conductivity is sepa-
rated into a real and imaginary term, the latter standing for the dielec-
tric contsant. The ratio of the two terms is then the loss angle, as
usually measured. In the following, calculations of the loss angle will
be carried out.

The theory as outlined above indicates that the ‘ionic mobility,
controlled by the viscosity for d.c., will be determined by the viscosity,
elasticity, and solid friction together, when the frequency increases.
Above a certain frequency range, which is lower the larger the vis-
cosity, the resistance will be determined by the elasticity and solid
friction alone. For temperatures considerably below the softening
point the viscosity constant of solids is so large that the frequency
range just mentioned will be below 1 cycle per second. This means
that for the whole practical frequency range the loss angle is only a
function of the elasticity and solid friction.

We are further restricted to frequencies below say 10° cycles, as
we do not possess any data on the solid friction coefficients for higher
frequencies. In drawing comparisons with experimental data one has
to bear in mind that apart from ionic motion there are other specific
mechanisms leading to dielectric losses. Our formulae will, therefore,
only supply a certain fraction of the total loss, which fraction will be
the higher, the less pronounced these specific mechanisms are in any
special case. The other mechanisms just referred to are due to in-
homogeneities of the material (Maxwell-Wagner), and to dipolar
molecules (Debye).

The final result of the corresponding deductions is that for suffi-
ciently low temperatures the loss angle, tan & , is:

2
2ne”~0
tan 8 - A€ R (7)
where n = ionic concentration, © = specific loss of solid friction,

and € = dielectric constant.
Let us evaluate Equation 7 for soda glass at different frequencies.

Take A\=7 x10°, e =5 p =2.5x 0y glass, especially

7) S. Whitehead: Proc. Phys. Soc. 47, 974, 1935.
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soda glass, it is safe to assume that the order of magnitude of n is the
same as the order of magniture of the number of molecules, ny ,
namely 10, This estimate can be strengthened somewhat in con-
necting it with an estimate of M, the ionic viscosity. We have for the
d.c. conductivity at small fields the general formula:

n

do il (8)
where K is to a first approximation independent of the material chosen
since the molecular radii which enter Stokes’ equation are alwaays of
the same order. K can be estimated from oils to be about 10 732 abs.
Thus for glass with g, ~ 1072

P OAGEE [
To
: 2 28 180

With n =10, N becomes 10™" . The extrapolated value from
large scale measurements is 10X for M, - Ina recent paper on the
slow changes in physical properties of glasses E. Seddon (8)also comes
to the conclusion that mo must be high but finite. In assuming lesser
orders for n, e had to be decreased proportionally which, however,
seems unlikely, coxisidering the extrapolated value. Thus the pair
a ~1022, Ty~ 10°° seems the most probable.

It has already been stated that © is fairly independent of fre-
quency. This independence also becomes evident by a recent paper
by Kruger and Rohloff on the internal friction of wood (9)in a fre-
quency range of from 10 to 10% cycles per second. Using then for
glass the data as obtained by Gemant and Jackson, we have the curve
A of Figure 2. Using, on the other hand, data obtained by Bennewitz
and Rotger, (10k slight variation with the frequency is noticeable
(curve B of Fig. 2), with a flat maximum of around 0.7 cycles. Figure
2C is obtained from data of Wegel and Walther on glass (1)at a fre-
quency range 10%t0 16° . It appears that there is a slight decrease
of © ,and, according to Eq. 7, of the loss angle when the frequency
increases.

These conclusions may be compared with the data by M. J. O.
Strutt. (12)The loss angle of glasses for any given temperature varies
but slightly with frequency according to his data, becoming generally
less with increasing frequency. This is the same result as seen on

8) E. Seddon: J. Soc. Glass Technol. 22, 268, 1938.

9) F. Kruger and E. Rohloff: Zeits, f. Phys. 110, 58, 1938.
10) K. Bennewitz a. H. Rotger: Physik,, Zeits. 37, 578, 1936.
11) R. L. Wegel a. H. Walther: Physics, 6, 141, 1935.

12) M. J. O. Strutt: Arch. f. Elektrotechnik, 25, 715, 1931.
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Figure 2. The absolute value of tan 3 is between 10™% and 10"2 for
room temperature, somewhat higher than the values indicated in
Figure 2. Curve D in Fig. 2 refers to one of his sets on a soda glass.

Although Eq. (7) is not valid for elevated temperatures, a tem-
perature curve of tan d for lead glass, based on solid friction data of
Gemant and Jackson, and on Eq. (7) is shown in curve A of Fig. 3.
Until the ionic viscosity, 0, , is more definitely known, the use of the
more general equations, as supplied by the theory, would offer but
little advantage. Curve B is based on direct measurements by Strutt
of tan & of a lead glass. The increase with temperature of tan 8 is,
as can be seen, of an exponential nature, the factor in the exponent be-
ing usually smaller than the corresponding factor for the d.c. con-
ductivity, the a.c. and d.c. curves submerging asymptotically towards
higher temperatures.

SUMMARY

1. The paper is concerned with ionic mobility in vitreous dielec-
trics, which generally exhibit a finite plasticity. The fundamental idea
is to deal with the deformation as caused by the motion of an ion in
the same way as macroscopic deformations of plastics are dealt with.
This latter can be described by means of three constants of the ma
teral, namely, pasticity, elasticity, and solid friction, and the same
should hold for the molecular deformation around a moving ion. The
equations for the ionic mobility, as deduced by the author in another
paper, are given here for numerical computation and comparison with
some experimental data.

2. In the case of d.c. the current-voltage characteristic can be
calculated. This is done for a set of assumed constants of a plastic
dielectric up to a field of 150 kV/cm. The curve shows the same fea-
tures as measurements on paraffin by Scislowski, and on cellulose
acetate and varnish paper board by S. Whitehead.

3. For an a.c. voltage the dielectric loss angle can be calculated
from the theory. This is done for soda glass, based on solid friction
data of Gemant and Jackson, Bennewitz and Rotger, and Wegel and
Walther in a frequency range between 10" and 1 cycles per second.
Another calculated curve shows the loss angle of lead glass, in its de-
pendence upon temperature between 20 and 140 C. The results are
consistent with experimental data on th dielectric loss of glasses ob-
tained by Strutt.

10.



Fig. 1 Current density vs. field ~ Fig. 3 Loss angle vs. tempera-
strength for a plastic dielectric, ture at low frequencies for lead
calculated after Eq. (6). glass,

A: calculated after Eq. (7)
& Legid] from solid friction data of
Gemant a. Jackson,

B: experimental data of

2 e Strutt.
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Fig. 2 Dielectric loss angle vs. frequency at room temperature
for soda glass.

A. B, C: Calculated after Eq. (7)
A) Gemant a. Jackson
B) Bennewitz a. Rotger
C) Wegel a. Walther.
D: experimental data of Strutt.
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A THERMODYNAMIC THEORY OF THE STRENGTH
OF MATERIALS.
by M. Reiner (Jerusalem) and K. Weisenberg (Southampton).

1. The strength of a material is that property by which it resists
either ruptures or excessive plastic deformation, which ultimately leads
to rupture. Rupture is a visible separation of the parts of a material
body. When the body is strained (in the general sense of the word)
beyond its strength, it fails. To prevent failure is a most important
task of engineering, which makes itdmperative to have a quantitative
measure of the strength. This is accomplished by means of a theory
of strength. The following theories of strength* have been proposed
to date:

The material fails, wken a certain limit (which, of course, is of
different character in each case) is exceeded by:
(a) the greatest of the principal stresses (Rankine),
(b) the greatest of the principal strains (St. Venant),
(c) the maximum shearing stress (Coulomb-Mohr-Guest),
(d) the maximum strain-work (Beltrami-Haigh),
(e) the maximum distortional strain-work (Huber(1)-Hencky (2))**

The last case calls for further explanation. If the tensors of strain
¢ , and of stress, p***, are resolved into their isotropic compon-
ents ev and pp , where e is the cubical dilatation and Pm the mean
tensxon and their deviator components, &, and Do, the elementary
strainwork

can likewise be resolved into two components, of which the first is
the work of dilatation or the volumetric work

dawy, i _p_m-d_e_v (2)
and the other the distortional work

dwO = Bo'd% (3)

Now, Huber and Hencky assume (I) that an isotropic (hydrostatic)
pressure (-pm ) may be increased beyond every limit without caus-
ing failure, and (II) that an isotropic tension (pm ) is of no influ-

* We are applying here the phenomenological point of view. We do not consider atomistic
theories of strength, which, as is well known, have not yet succeeded in approaching
real conditions in any degree.

=* The mathematical expressions for both Huber and Hencky's theories are the same, but.
while Huber is concerned with rupture, Hencky is concerned with plastic flow.

wes vectarg arg undoriingd
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ence upon plastic flow but may cause failure by exceeding the true
molecular cohesion of the material. If the latter is not exceeded, the
material may fail by W, exceeding a limit of maximum distortional
work.

Of the theories enumerated above, Huber’s and Hencky’s theory
has proved the most satisfactory. For homogeneous or quasi-homogene-
ous non-porus materials their assumption (I) has been established
by experiments beyond any doubt, while (IT) is a logical conse-
quence of the concept of cohesion. Their theory has been shown to
be generally applicable to such tests, as are carried out at the ordinary
testing speeds.

2. All these theories have in common that the velocity of strain
does not enter. They are purely statical. Recent improvements in
the methods of testing of materials and the frequent use of high-speed
tests as well as of creep tests have made it, however increasingly evi-
dent that the velocity of strain considerably influences the result of the
test. It is therefore obvious that no. purely statical conception can lead
to a satisfactory thecry of strength. A theory taking account of the
velocity is required both from theoretical and practical considerations.
E.g. Most Standard Specifications for mild steel asks for-a certain
minimum breaking stress, to be determined in a tensile test, without,
however, specifying the speed at which the test is to be carried out.
It is well known that less conscientious makers of rolled steel, if their
product is not up to standard at ordinary speeds, resort to the method
of increasing the speed, with the result that a higher breaking stress is
obtained. On the extreme end of a series of all sorts of materials,
where the influence of testing-speed makes itself felt stands e.g. arti-
ficial silk, where the concept cf strength has a meaning at all only in
respect of a maximum velocity of strain.

Because of the satisfactory evidence for the Huber-Hencky theory
at low speeds, a good dynamical theory would have to contain Huber-
Hencky’s statical theory as a special case. There is no necessity of
modifying their postulates (I) and (11). All volumetric strain is com-
pletely reversible and therefore purely elastic. In this case the relation
between stress and strain is accordingly one-valued and the velocity
of the strain cannot be of any influence. It is the deviator-components
of stress and strain only and the distortional work, with which we are
concerned. We will therefore simply write ¢, p and W for &, Po
and Wo.

3. The weak point of Huber’s theory becomes evident, when
we consider a metal bar in creep. If a mild steel bar is loaded at a
certain raised temperature, it will be continuously elongated at a
constant speed. It seems that there is no other limit to this creeping

15,



than the appearance of heterogeneties, whenthe section thins down to
such a width that the constituents of the mateiral do not average any
more over the cross section. The strain work performed by the load
therefore also increases continuously and practically without any
limit. This would mean that such a mild steel bar is of infinite
strength.  This, however, is, by common experience, not the case.
Hencky has pictured the maximum distortional work which can be
applied upen the body, or the maximum distortional energy which can
be “poured” into it, without causing failure, as the contents of a
vessel, which overflows at failure. Accordingly the Huber-Hencky
theory would require the “vessel” for such a mild steel bar to be of
“infinite contents.”

Instead of a vessel of infinite contents, a “leaking vessel” would
do the same trick of admitting very large and in certain cases unlimited
quantities of strain work. Such a model has been proposed by one
of us (3) . In creep the strain work is not stored up in the form of
potential elastic energy, but is dissipated. The leakage of the vessel
corresponds to the dissipation of energy. Rupture would still occur
when the vessel overflows, but this would not depend on the strain
work performed, but on the potential energy stored up, which in
general is only a fraction of the former.

4. This makes it clear that a dynamical theory ot strength can
only be a thermodynamical theory. One of us(4) developed a me-
chanics of deformable bodies founded on thermodynamics. This will
be used as the basis for a thermodynamical theory of strength. Let
W be the strain work, F the free intrinsic* and energy and D the bound
(dissipated) energy, all per unit volume, then the first law of the
therodynamics requires

a (W A F a% /D

rry (;) i & g (B-) x at (E) 0 (4)
where g is the density. The density has to be introduced because the
first law does not refer to unit volume, but to unit mass.

Now let us consider isothermal processes only, i.e. the heat into
which the dissippated energy is converted has to be conducted away
without delay. Then in accordance with the second law we have

d D -
71‘-(5-)> 0 (5)

where the sign = stands for reversible and the > sign for inreversible
processes. B
From the fact that el (E) vanishes for all reversible processes

* The free intrinsic energy is the total free energy minus the kinetic energy.

14,



there follows that intrinsic free energy is equivalent to a generalized
elastic potential ¢ .

If we consider the volumetric strain work separately and the
quantities in equations (4) and (5) refer to the distortional work
only. # can be taken as constant and cancels out.

Using Newton’s dot for differentiation in respect of time we ac-
cordingly write s i

W+ %g D=0 (6)

where it is understood that D can only be either positive or zero.
The distortional work can be expressed in terms of stress and
velocity of strain as

AW = - p-e dt* (7)

from which we get for the distortional power

W=-pe (8)

For purely mechanical processes" and D are functions of stress and
strain and their differential quotients in respect of time only, Indicat-
ing byn andv the order of the differential quotient, wherep and
Qe cansnave anvivaliiee g s b i il

oo , we ultimately write

¥ . v
-pes s SEEEL L ) <o ©)
This equation has been called the mechanical equation of the state
of the material. 4. The functions ¢ and D are of different form for
every group of materials and the materials themselves can be distin-
guished by the various values of the constants which appear in the
equation of state. These constants are the mechanical material con-
stants. E.g. one group of materials is formed by all perfectly elastic
bodies, which follow Hooke’s law, the different materials being dis-
tinguished by the value of the modulus of rigidity y . Another group
is formed by all simple viscous liquids, which obey Newton’s law,
and the different liquids are distinguished by the value of the coeffi-
cient of viscosity 7.

5. On the basis of the development of the preceeding section
we can say that failure depends upon a maximum value of the intrinsic
free energy, i.e. the energy b which can elastically be stored up in the
volume-element of the material. Failure will occur when

*The negative sign is used because in Equation (6),W is the power of the external forces
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bp = [(W - D) as>x (10)
where K is material constant, which may be called the strength
modulus. Equation (10) may be called the rupture condition. Where
there is no dissipation of energy or where the dissipation of energy
is negligable, as in the case of a steel tensile test at ordinary speed, D
either vanishes or can be neglected and the condition for rupture
becomes

T,
[Hat=gp>x (11)
o

which is the condition of Huber and Hencky’s theory. In an irre-
versible process where D is in accordance with Equation (5) positive,
part of the power of distortion leaks out and a part of it only can be
stored up. At certain states of stress and strain, when W = D, the
body can be strained at infinitum without failure.

In order to evaluate equation (10) for a special case, the follow-
ing have to be known, viz.
(I)  the mechanical equatio nof state of the material,
(II)  the mechanical conditions of the test

Ad (I) : this can generally be expressed as a relation between the
time-differential equations of the stress and strain, or

v
R(g,g) = 0 (12)*

Ad (II) : these consists of the dynamical and kinematical bound-
dary conditions.

From (1) the free (potential elastic) power ¢ can be calculated
and by means of (I1I) § can be segregated up to breaking strength.
6. The present theory can find its verification only by comparison
with actual tests. The difficulty of using existing test-results lies in
this that the observations of cases of rupture and is correlation with
loading, straining and velocity of strain of testpieces i.e. all knowledge
required under (II), is of little value if we do not, at the same time
know in accordance with the requirement (I) the mechanical equa-
tion of state of the material. This, however, has seldom, if ever, been
completely determined in connection with experiments on strength.
In order to check the present theory special experiments would there-
fore have to be undertaken. Until this is done, the present theory can
only be qualitatively checked from known strength tests. The theory
would gain very much in probility, if it could be shown that an increase
in breaking strength with increasing velocity of straining, as men-

* It should be kept in mind that this is a tensor-equation.
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tioned in Section 1, would follow from it. On the other hand the
theory could be discarded at once, if this was not the case.

As we do not know the actual equations of state of the materials
under test we have to make assumption about them. If we specialize
Equation (12) for cases where only the first differential quotient
appears, i.e. if we assume the equation of state to be of the form

R(e. éo e, é) =0 (13)

this would qualitatively cover all conditions. We can go a step further
by assuming R to be linear, or of the form

C+ Cop + Cap + Cge+Cs8=0 (14)

If the actual equation at state would show itself quantitatively but not
quantitatively.
Equation (14) can be considered as composed of two equations

Ay + Agp +Aze + Agd = 0 (15)
and

By + Bop+ Bap + Byé = 0 (16)

and accordingly the material which has Equation (14) as its equation
of state, as composed of two materials, which have the equations of
state (15) and (16) respectively. The first can be called an e-body
and the second a p-body.

We can neglect Ay, which can be interpreted as an initial stress
and By, which can be interpreted as an initial strain and equations
(15) and (16) can be written as

P-27,-2m8=0 (17)*
28 - p/n, - PN, = 0 (18)

As can be easily seen, the first of these bodies is a solid, the second a
liquid. The constant 7 is an elastic modulus and the constant i a
coefficient of viscosity. The subscripts s and z are meant to indicate
the solid and the liquid state and ns is accordingly the measure of the
viscous resistance to the deformation in a solid, while¥ 4 is the meas-
ure of the elasticity of a liquid. Where mg is absent, the first body is

* The factor 2 results from the usual definition of the materfal constants ¥and T, or,
what comes to the same thing, of shear.
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reduced to a Hookean solid, where Yg is absent the second body is
reduced to a Newtonian liquid. The ideal material represented by
equation (17) may be called a Voigt-solid (5), the other represented
by (18) may be called a Maxwell-liquid (6). While it is not main-
tained that any real materials could be perfectly represented by either
a Hooke or a Voigt-solid or by a Newtonian or a Maxwellian liquid, it
may be assumed that the properties of the ideal materials represented
by the equation of tsate (17) and (18) can be encountered at varying
degrees in the mechanical behavious of every real material.
7. (a) In the Hooke-solid, the equation of state of which is

P =2e (19)
all the strain-power of the external forces is converted into elastic
potential energy and none is dissipated, or
B S _d. 2
%:; = D'e = 2Yeé = ¥ 3t @ (20)
which gives
2 .
b-yez-%;D-O (21)
(b) In a Newtonian liquid the equation of state of which is

P e (22)
all the strain power of the external forces is dissipated, or

* . ,2 2
b=0,5=pd=2n8 . (23)
The function D is called Raleigh’s dissipation function.
(¢) For the Voigt-solid equatipn (17) gives
pd = 2 geé + 21,8 (24)
and comparing Equation (24) with Equation (9) we find
. d o e .2
ii.Qa 2Ygee = ¥ =} b-)’se , D= 2nse

dt dt (25)
(d) For the Maxwell liquig Equa.tion (18) gives
i gl )
g Ay (26)
and comparing Equation (26) with E%uation (9) we find
ap/at = pp/ar, = 1/4 Y, (a p°/at) i

¢ = p/ay,, D= pz/z'qz
Applying our rupture condition Equation (10) to these four
cases, we find:

(a) A solid, which is perfectly elastic up to the yield point and is
therefore an ideal plastic material, or which is perfectly elastic up to
rupture and is therefore an absolutely brittle material, fails through
plastic deformation in the first or through rupture in the second once,
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when either the stress or the strain reaches a certain limit. For such
materials our criterion is therefore reduced to Hencky’s and Huber’s
criteria respectively, and these in their turn reduced to Rankine’s and
St. Venant’s criteria respectively, which give in this casé identical re-
sults, provided the deviator-components of the stress and strain-
tensors are taken and not the complete tensors.

(b) A simple viscous liquid, which had no elasticity, can only
be “broken up” by hydrostatic tension. In laminar flow, -where the
mean pressure is equal to the hydrostatic pressure, a éimple viscous
liquid cannot fail, because for such a material vanishes and is there-
fore smaller than any limit which may be put to its strength.

(¢) A Voigt solid fails when the strain reaches a certain limit.
There is no one-valued relation between stress and strain and no defi-
nite limit of stress corresponds to the limit of strain. Let ép be the
strain failure, then equation (17) shows that

Pe = ger + 2me (28)

and that the stress at which the material fails increases with the velocity
of strain. Let p be the stress at which the material fails in a static test,
i.e. with vanishing strain-velocity, then there is

Pr =p + 2ngé (29)

As Mg can be determined from the damping of free oscillations of
the material under test, i.e. independently of the strength test, the de-
pendence of the strength of the material from the speed of deforma-
tion can be predicted in accordance with Equation (290 aeltinis ot
maintained that this dependence will in the case of say a mild steel
bar, actually be a linear one. On the contrary, it may be expected that
it will not be linear, because it is well known that equation (17) does
not correctly describe the damping of free oscillations of a metal wire.
If however from oscillation experiments the correct form of the func-
tional relationship which had to replace Equation (17) is determined,
there is no difficulty in deriving the relationship, which had to replace
Equation (29). Qualitatively, however, it is shown that our theory
gives the result that the failure-stress of an elastic material, which
shows damping of its free oscillations, increases with increasing vel-
oscity of strain.

(d) A Maxwellian liquid, i.e. a viscous liquid which shows elas-
ticity, on the other hand fails when the stress reaches a certain limit
P¢. To this limit there does not correspond a definite limit of the
velocity of strain, Equation (18) shows that

19.



8¢ = pr/2rg + p/2)) (30)

Let é be the velocity of strain at which the material fails if the stress
is applied infinitely slow, then there is

DR RS A (1)

The modulus of elasticity ¥p can be determined oscillation-experi-
ments (7), and the maximum velocity of strain at which failure occurs
predicted in accordance with Equation (31). This is applicable to
failure of a metal or any other material in creep (e.g. concrete), which
can be considered a very viscous and elastic liquid and of such material
as artificial silk, etc., or all liquids, which are “spinnbar.” Here also
Maxwell’s linear relation is too simple (8)) and the correct equation
of state had to be determined for every group of materials by experi-
ment.
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